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1  INTRODUCTION 
 

This document represents a user manual that covers the technical and application details of the 

PKtool environment. Among the topics addressed, there are explained the steps to configure a 

SystemC description for PKtool analysis, with the support of concrete examples.    

This manual is referred to the PKtool version 2.3.0, and provides a comprehensive treatment of the 

topics introduced in the PKtool overview document. All the information concerning installation can 

be found in the ‘INSTALL’ file placed in the top directory of a PKtool release. 

The contents are organized as follows: 

 

Section 2:    Power models 

Section 3:    Augmented signals 

Section 4:    Steps for configuring a module for PKtool simulations 

Section 5:    Inclusion of the PKtool header file 

Section 6:    Definition of a power model and its components 

Section 7:    Power model and static data specification 

Section 8:    Characterization based on power states 

Section 9:    Analysis results 

Section 10:  Simulation time specification    

Section 11:  Default model libraries 

 

The first two sections report an in-depth description of some components used in PKtool analysis. 

Sections 3-10 cover the details related to system configuration and simulation phases. Finally, 

Section 11 illustrates the default power models made available by PKtool.  

In the following, we will simply use the term module to indicate an sc_module, i.e. the component 

provided by SystemC to define modular entities. Moreover, the term ‘power estimations’ will be 

often used to indicate estimations in conventional way, without reference to their physical nature 

(energy, power, commutations).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

2  POWER MODELS 

 

 

2.1  Introduction 

The power estimations resulting from PKtool analysis are based on the evaluation of user-selected 

power models. A power model is commonly defined through predetermined computations (model 

formulation) that return a power estimation on the basis of specific data (model data). Model 

formulation can be expressed in several ways, such as analytical formulas, algorithmic procedures, 

relational tables [1]. Model formulation and model data represent the central elements of a power 

model in regard to its definition and application. In the following, these elements will be the main 

references to characterize a power model.     

Within PKtool environment, a power model is defined through a C++ description incorporated 

inside the tool implementation. Such description specifies all the related computations in the form 

of standard functions requiring model data as input parameters.   

As concerns model data, as already discussed in the overview document, we can distinguish two 

categories: 

 

1) static data: information available before the beginning of a simulation and not dependent on the                                                                          

    run-time evolution of the system.  

 

2) dynamic data: information available only during simulation, on the basis of the run-time system                                                                  

.    evolution.  

 

Typical examples of static data may be represented by technology and operative parameters; typical 

examples of dynamic data may be given by signal information, e.g. switching activity.  

During a PKtool simulation, model data have to be specified and linked to the applied power 

models, making so relevant the distinction between static and dynamic data. For this purpose, 

PKtool provides different solutions for handling model data. In particular, dynamic data are 

associated to signal information and are automatically handled by means of augmented signal 

capabilities. As concerns static data, their specification is carried out at the beginning of the 

simulation through the procedure illustrated in Section 7.    

 

 

2.2  Power model categories 

In PKtool environment, power models can be classified into two categories according to their 

output estimation type. More precisely, PKtool is compatible with power models that provide 

estimations in terms of energy or total commutations. From now on, we will refer to these two kinds 

of power models as energy models and commutation models respectively. 

PKtool can be applied also with power models returning estimations in terms of average power or 

commutation rate. In fact, such power models can be easily turned into equivalent energy or 

commutation models by introducing the simulation time in their formulations. 

When a module is configured for PKtool analysis, the user must specify if the applied power model 

is an energy or a commutation model. As will be shown in 6.4, this specification is realized through 

a macro instruction in the power_module class. 

Power models can be further classified with respect to the modalities used for their evaluation; more 

precisely, we can distinguish between cumulative models and cycle-accurate models [1]. The first 

category represents power models evaluated only at the end of a simulation period, providing an 

overall power estimation. The required model data usually consist in average values or time-

cumulated data. Conversely, cycle-accurate power models are evaluated at every cycle of a 

simulation period, providing distinct estimations referred to the single cycle times. In contrast with 
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cumulative power models, the required model data are usually cycle-based quantities, e.g. the 

Hamming distance between consecutive input patterns. From a cycle-accurate power model it is 

always possible to get an overall estimation, by summing up the partial estimations computed in 

each cycle.  

 

 

2.3  Power model libraries and PKtool default libraries 

PKtool is not related to a particular power model but makes available a variety of power models 

that a user can select without limitations. All the available power models are incorporated into 

model libraries integrated into the software implementation of the tool. Inside a model library, it is 

possible to include only power models based on the same estimation type, that is energy models or 

commutation models. This implies two possible kinds of model library, referable to as energy 

library and commutation library.  

Within a model library, the power models are referenced through a double identifier composed by a 

non-negative integer index (model index) and a character string (model name). Such identifiers are 

unique for each power model of the library, and two power models with the same index or name 

cannot be present. 

The PKtool framework makes it possible to define several model libraries and let them coexist 

together. However, during a simulation session, only one energy library and one commutation 

library can be enabled. At the present time, PKtool makes available an energy library and a 

commutation library called pk_default_energy_lib and pk_default_comm_lib respectively. During a 

PKtool simulation such libraries are enabled by default, and the user can have a direct access to the 

related power models. These libraries and their power models will be described in Section 11. 

A user is allowed to define customized power models and make them applicable for PKtool 

analysis. Such power models can be incorporated into the PKtool default libraries, in addition to the 

power models already available. The definition of new power models can be realized by following 

some specific rules. However, the related details are not reported in this user manual and could be 

dealt with in a future documentation.  
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3  AUGMENTED SIGNALS 

 

 

3.1  Introduction 

PKtool provides the means for computing characteristic signal data often required by power models, 

such as bit length, bit commutations, operation statistics. These components are called augmented 

signals and are based on a set of augmented types defined in the PKtool framework.  

An augmented signal can be regarded as a smart signal, able to extend its basic behaviour with 

further capabilities to provide additional information. When a module is configured for PKtool 

analysis, augmented signals can be used for selecting those signals whose characteristic data are 

required for power estimations. The instance of augmented signals is realized at code level, by 

modifying the original types of the signals to be monitored. More precisely, the original types have 

to be replaced by corresponding augmented types provided by PKtool. 

For example, let us suppose this signal is instanced in the original implementation of a module: 

 

sc_uint<16> bus; 

 

The signal is called bus and is associated to the SystemC type sc_uint<16>. In order to convert this 

signal into an augmented counterpart, it is necessary to modify the instance instruction in this way: 

   

sc_uint_aug<16> bus; 

 

where the original type has been replaced with the matching augmented type, sc_uint_aug<16>. At 

this point the bus signal has become an augmented signal, so gaining all the specific capabilities.  

 

 

3.2  Signals that can be augmented 

In general, a module can be constituted by two kinds of signals: I/O ports and internal nodes. 

Currently, it is possible to augment I/O ports without limitations, compatibly with the available 

augmented types provided by PKtool (3.4). As concerns internal nodes, only the instances defined 

as class members can be augmented with full functionalities. Internal nodes given by local entities 

(typically, variables defined inside functions) can be converted into the augmented format with 

some limitations. More precisely, such signals can be augmented only if defined in unspawned 

processes (sc_thread, sc_method, and sc_chtread) [3] or functions called by an unspawned process. 

Moreover, local internal nodes are not associated to identification fields (3.5) and the data that can 

be extracted from them are limited to total commutations and operation occurrences.  

In order to clarify these distinctions, let us consider the following module class:  

 

#include “systemc.h” 

 
SC_MODULE( example_mod1 ) 

{  

  

 // I/O ports 

  

 sc_in<double> input; 

 sc_out<double> output;  

 sc_in_clk clk;  
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 // internal nodes defined as class members 

 

 double bus_1; 

 sc_int<32> bus_2; 

 bool ctr_1; 

 

 

 // member function defining a spawned process 

 

 void data_gen() 

 { 

  sc_int<32> bus_3;   // local internal node  

  ... 

  ... 

 }; 

 

 

 // member function defining an unspawned process 

 

 void proc1()            

 { 

  sc_int<32>  bus_4;  // local internal node   

  ... 

  ... 

 }; 

 

 

 void proc2()            

 { 

  sc_spawn(sc_bind(&example_mod1::data_gen, this));  

  ... 

  ... 

 }; 

 

  

 SC_CTOR(example_mod1) 

 { 

  SC_METHOD(proc1) 

  sensitive << clk.pos(); 

 

  SC_METHOD (proc2) 

  sensitive << clk.pos(); 

 

 } 

 

} 

 

All the I/O ports and the internal nodes bus_1, bus _2, bus _4, and ctr_1 can be converted into 

augmented signals (bus_4 with limited capabilities), whereas such conversion cannot be made for 

the internal node bus_3.  
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3.3  Data provided by an augmented signal 

At the moment, an augmented signal can provide the following data: 

  

1) bit length: the bit length with respect to the binary representation.  

2) bit commutations: the commutations occurred at single bit level. 

3) total commutations: the sum of all the commutations occurred, i.e. the sum of all the commuta-            

                                     tions at bit level.  

4) bit probabilities: the fractions of simulation time in which the bit values are a logic high [2]. 

5) operation occurrences: the number of times in which a specific operation has been carried out   

                                         (at the moment available only for the arithmetic operators  +, -, *, / )   

 

The last four data are computed and made available in the course of a simulation, on the basis of the 

run-time evolution; bit length is available from the beginning of a simulation on the basis of the 

original signal type. Operation occurrences are computed only in application with operator-based 

power models (10.2). 

In order to show the values assumed by these data, let us consider again the augmented signal bus 

introduced in 3.1. As concerns bit length, the corresponding value is 16 in accordance with the 

sc_uint<16> type. As concerns the other data, their values can be determined only in reference to 

the signal evolution during a simulation. For this purpose, let us consider the following assignments 

during a simulation period of [0 ns – 40 ns]:  

 

                    TIME                                                                SIGNAL VALUE                                         

                      0 ns                                                                   0 (initial value)                                     

                    10 ns                                                                   2 

                    20 ns                                                                   5 

                    30 ns                                                                 16 

                    40 ns                                                                   4 

 

The above scheme reports the values assumed by the signal under the assumption of a clock period 

of 10 ns. With regard to bit commutations, total commutations and bit probabilities, the corre-

sponding values are reported in the following table: 

 

 

TIME (ns) 0  10  20 30 40 

bit 

representation 

0000000000000000 0000000000000010 0000000000000101 0000000000010000 0000000000000100 

bit 

commutations 

0000000000000000 0000000000000010 0000000000000121 0000000000010222 0000000000020322 

total 

commutations 

0 1 4 7 9 

bit 

probabilities 

0000000000000000 0000000000000000 00000000000000 
0.5 0 

0000000000000 
0.33 0.33 0.33 

00000000000 0.25 
0 0.25 0.25 0.25 

 

The first row reports the binary representations of the signal; the successive rows show the values 

referred to bit commutations, total commutations and bit probabilities. Bit commutations and bit 

probabilities are represented by integer/double vectors with size equal to the bit length. Total 
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commutations are instead given by an integer value that coincides with the sum of bit 

commutations. From these data, by means of simple manipulations, it is possible to derive other 

signal statistics such as average bit commutations and commutation density [2].   

 

 

3.4  Available augmented types 

PKtool provides the augmented counterparts for many of the types used for modelling signals in 

SystemC/C++. The following list reports the augmented types currently available: 

 

       ORIGINAL TYPES                                        AUGMENTED TYPES 

                                            I/O PORTS 

 

             sc_in<T>                                                         sc_in_aug<T> 

             sc_out<T>                                                       sc_out_aug<T> 

             sc_inout<T>                                                    sc_inout_aug<T>   

             sc_in_resolved                                                sc_in_resolved_aug 

             sc_out_resolved                                              sc_out_resolved_aug 

             sc_inout_resolved                                           sc_inout_resolved_aug 

             sc_in_rv<n>                                                    sc_in_rv_aug<n> 

             sc_out_rv<n>                                                  sc_out_rv_aug<n> 

             sc_inout_rv<n>                                               sc_inout_rv_aug<n> 

 

 

                                      INTERNAL NODES  

             sc_bit                                                               sc_bit_aug 

             sc_logic                                                            sc_logic_aug 

             sc_bv<n>                                                         sc_bv_aug<n> 

             sc_lv<n>                                                           sc_lv_aug<n> 

             sc_int<n>                                                          sc_int_aug<n> 

             sc_uint<n>                                                        sc_uint_aug<n> 

             sc_signed                                                          sc_signed_aug 

             sc_unsigned                                                      sc_unsigned_aug 

             sc_bigint<n>                                                      sc_bigint_aug<n> 

             sc_biguint<n>                                                    sc_biguint_aug<n> 

             sc_fix                                                                  sc_fix_aug 
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             sc_fix_fast                                                          sc_fix_fast_aug 

             sc_fixed                                                              sc_fixed_aug 

             sc_fixed_fast                                                       sc_fixed_fast_aug 

             sc_ufix                                                                 sc_ufix_aug 

             sc_ufix_fast                                                         sc_ufix_fast_aug 

             sc_ufixed                                                             sc_ufixed_aug 

             sc_ufixed_fast                                                     sc_ufixed_fast_aug 

                 

             bool                                                                      bool_aug 

             char                                                                      char_aug 

             int                                                                         int_aug 

             float                                                                      float_aug 

             double                                                                  double_aug 

             signed                                                                  signed_aug 

             unsigned                                                              unsigned_aug 

             long                                                                      long_aug 

             short                                                                     short_aug 

 

The signal types have been logically subdivided considering their use as I/O ports or internal nodes. 

Given an original signal type, the rule for having the augmented counterparts consists in adding the 

term ‘_aug’ in the original type name.  

As concerns internal nodes, the available augmented types cover almost all the signals that can be 

modelled through C++ native types and specific SystemC types. At the moment, the augmentable 

I/O ports are only those related to the interfaces sc_signal_if and the resolved versions. 

    

 

3.5  Identification fields 

An augmented signal is univocally associated to an identifier set. Such identifiers allow to 

distinguish different augmented signals instanced in a same context. More precisely, an augmented 

signal is identified by three fields: module name, signal category and numeric index. The first field 

is the univocal name of the belonging module [3]. In regard to signal category, there are four 

possible values:  

 

1) input port 

2) output port 

3) input-output port 

4) internal node     

 

The signal category internal node concerns the internal nodes that can be augmented in compliance 

with the limitations described in 3.2. The numeric index is a positive integer with the aim to 

distinguish augmented signals of the same category and belonging to the same module. Such index 

is assigned on the basis of the construction order, as specified by the standard C++ rules [4]. For 
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example, if inside a module there are instanced N augmented input ports, the first-built port is 

assigned to the index 1, the second-built port to the index 2, and so on. 

In order to clarify the identification rules, let us consider the following module class:  

 

SC_MODULE( example_mod2 ) 

{ 

 // ports 

 

 sc_in<bool> clk; 

 

 sc_in_aug<sc_int<32> > in1; 

 sc_in<int> in2,in3; 

 sc_in_aug<sc_uint<64> > addr; 

 

 sc_out<bool> error; 

 sc_out_aug<sc_uint<64> > out1, out2; 

 

 sc_inout_aug<int> log1; 

 sc_inout<int> log2; 

 

  

 // internal nodes 

 

 int_aug<64> st1; 

 bool st2; 

 unsigned st3; 

 sc_uint_aug<16> st4, st5; 

 

 // rest of the code 

 ... 

 ... 

} 

 

The class body comprises both ordinary and augmented signals. These latter are given by the input 

ports in1 and addr, the output ports out1 and out2, the input-output port log1, and the internal nodes 

st1, st4, and st5.  

Now, let us consider the values assumed by the identification fields for this instance of 

example_mod2 : 

 

example_mod2   module(“master”); 

 

The name given to the module is master, which represents the module name identifier for all the 

augmented signals. The following table summarizes the identification fields for each augmented 

signal:  
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signal module name signal type numeric index 

 

in1 master input port 1 

addr master input port 2 

out1 master output port 1 

out2 master output port 2 

log1 master inout port 1 

st1 master internal node 1 

st4 master internal node 2 

st5 master internal node 3 
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4   STEPS FOR CONFIGURING A MODULE FOR PKTOOL ANALYSIS 

 

 

4.1  Characterization of the steps 

PKtool analysis are executed at level of the single modules constituting a monitored system. For 

each selected module, it is necessary to realize a configuration procedure based on some systematic 

steps. This section reports an overview of these steps, mentioned below in their logical order:  

 

a) Inclusion of the header files for making visible PKtool class library. 

 

b) Specification of the output estimation type (energy or commutations).  

 

c) Specification of the power model to be applied. 

 

d) Instance of the augmented signals whose data are required for power estimations.     

 

e) Assignment of the static data required by the applied power model. 

 

f)  Definition of  a power state characterization, in the case of a configuration based on this  

     approach. 

 

For simplicity reasons, we will often refer to these steps through the alphabetical letter associated in 

the above list.  

The steps a), b), c) are always to be carried out. The necessity of the steps d) and e) depends on the 

nature of the data required by the applied power models. The step f) is optional, and is to be 

considered only for analysis based on a power state configuration. The steps a), b), d) and f) are 

realized via code-level instructions, whereas the steps c) and e) are based on a specification 

procedure at the beginning of a PKtool simulation. 

 

 

4.2  Application example for describing the configuration steps  

The configuration steps will be illustrated by means of examples on a simple module with the 

following top level structure:  

 

 

 

 

       

 

 

 

Such module is called square_input and its I/O layout is composed by three input ports (input , 

standby, and clock) and two output ports (output and overflow).  The main process computes the 

square of the unsigned values sent to the input port, reporting the results onto the output port. This 

process is synchronous with respect to the positive edges of the clock. If the input value is greater 

than 255 an overflow condition occurs, which is communicated through the overflow port. If the 

standby port is set to true, the system enters into a standby state and stops its calculation activities 

for a period of three clock cycles. After this time, the ordinary behaviour is resumed if the standby 

port is set to false.  

What follows is a possible SystemC representation of the square_input class: 

 

SQUARE_INPUT 

    input 

 standby 

 clock 

output 

overflow 
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#include "systemc.h" 

 

SC_MODULE(square_input)     

{  

 

 sc_in<bool> standby; 

 sc_in<sc_uint<8> > input; 

 sc_out<bool> overflow; 

 sc_out<sc_uint<16> > output;    

 sc_in_clk clk; 

  

 const unsigned over_value; 

   

 void process() 

 { 

  while(true) 

  { 

   if(standby) 

   { 

    output = 0; overflow = false; 

    wait(); 

    wait();  

    wait(); 

   } 

   while(standby) wait();  

   if( input.read() >= over_value ){ output = 0; overflow = true;} 

   else { output = (input.read()*input.read()); overflow = false;}; 

   wait(); 

  };    

 }; 

 

 

 SC_HAS_PROCESS(square_input); 

 

 

 square_input (sc_module_name name): sc_module(name),over_value(255)  

 { 

  SC_THREAD(process) 

  sensitive_pos<<clk.pos();   

  dont_initialize(); 

 

  output.initialize(0); 

 }; 

 

}; 
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5  INCLUSION OF THE PKTOOL HEADER FILE 

 

The configuration for PKtool analysis firstly requires to make visible the PKtool class library. This 

is achieved by including the PKtool header file in the class implementation of the monitored 

modules. Such file is called PKtool.h and is incorporated into the PKtool software framework.  

The inclusion of the PKtool header should be considered in two typical cases. The first situation 

concerns the instance of augmented signals inside a module class. As described in section 3, this 

operation entails the use of augmented signal types provided by PKtool, which can be made visible 

only via the PKtool header.  

As a concrete example, let us consider the class defining the module square_input, assuming that 

the related code is reported in a header file called square_input.h :   

 

//  square_input.h 

 

#include "systemc.h" 

 

SC_MODULE(square_input) 

{  

 

 sc_in<bool> standby; 

 sc_in<sc_uint<8> > input; 

 sc_out<bool> overflow; 

 sc_out<sc_uint<16> > output;  

 sc_in_clk clk; 

 

 // rest of the code 

 

 ... 

 ... 

 

} 

 

If we want to augment the ports input and output, we must modify the above code in this way: 

 

//  square_input.h 

 

#include "systemc.h" 

#include "PKtool.h"    //  PKtool header file 

 

SC_MODULE(square_input) 

{  

 sc_in<bool> standby; 

 sc_in_aug<sc_uint<8> > input; 

 sc_out<bool> overflow; 

 sc_out_aug<sc_uint<16> > output;    

 sc_in_clk clk; 

 

 // rest of the code 

 ... 

 

} 
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With respect to the original code, we have included the PKtool header before the class body and 

after the SystemC header. This makes possible the conversion of the ports input and output into 

their augmented counterparts. SystemC and PKtool headers must always be included according to 

the order shown in the example.  

In general, the inclusion of the PKtool header could not be strictly mandatory in this case. Actually, 

such inclusion is necessary only if the applied power model requires specific signal data in its 

formulation, thus making necessary the instance of augmented counterparts for some signals. 

The PKtool header must be included also for defining a power_module class (topic discussed more 

deeply in section 6). This situation can be illustrated through another example, in which we want to 

define a power_module class for square_input. As ordinary practice, the power_module code can be 

reported in a separate file that we could call powmod_squin.h. As concerns the initial #include 

directives, this file should begin in this way:  

 

//  powmod_squin.h 

 

#include " square_input.h" 

#include "PKtool.h"           //  PKtool header file 

 

 

// power_module class 

... 

... 

 

The first header makes visible the module class, whereas the second one the PKtool components for 

defining the power_module class. Unlike the instance of augmented signals, in this case the 

inclusion of the PKtool header is always mandatory to configure square_input for PKtool analysis. 

Nonetheless, if this header has already been specified in square_input.h (for example, to instance 

augmented signals), its explicit inclusion can be omitted in powmod_squin.h.  
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6  DEFINITION OF A POWER_MODULE AND ITS COMPONENTS 

 

 

6.1  Introduction 

In order to configure a module for PKtool analysis, it is necessary to define a specific 

power_module. A power_module is a PKtool entity that allows to make a module monitorable by 

PKtool. Moreover, a power_module is also the place where to realize the configuration steps b) and 

f). Like an ordinary module, two sequential phases are to be considered for instancing a 

power_module:  

 

1) definition of the power_module class. 

2) instance of power_module objects. 

  

The specific details will be described through a concrete application on square_input module. 

 

 

6.2  Power_module class   

First of all, it is necessary to define the power_module class. The simplest form for the class title is 

the following: 

 

#include "square_input.h" 

#include "PKtool.h"            

 
POWER_MODULE_CLASS(square_input ) 

{ 

 ... 

 ... 

} 

 

where we have used the parameterized macro POWER_MODULE_CLASS, with the name of the 

module class as parameter. This title definition is the most commonly used, and should be applied 

when a power_module class does not have to inherit from further classes. 

Alternatively, the class title can be defined through a more classical C++ form: 

 

struct POWER_MODULE(square_input): square_input, power_module_b,... 

{ 

 ... 

 ... 

} 

 

In this case, the power_module class is implemented by a struct whose name is given by the macro 

POWER_MODULE, with the name of the module class as parameter. This struct must inherit 

publicly from the module class and the power_module_b class; this latter is defined in the PKtool 

library. As implicitly shown in the code, the power_module class could inherit from further classes. 

 

 

6.3  Constructor and destructor 

The power_module constructor may be specified through two possible options. The simplest way is 
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POWER_MODULE_CTOR(square_input) 
{ 

 ... 

 ... 

} 

 

where we have used the parameterized macro POWER_MODULE_CTOR, with the name of the 

module class as parameter. 

The second way is based on a more complex instruction:   

 

PK_HAS_PROCESS(square_input ); 

                                 

POWER_MODULE(square_input) (::sc_core::sc_module_name nm, ...):                         

       square_input(nm, ...), PK_PMB_CTOR, ... 

{ 

 ... 

 ... 

} 

 

First of all, we must specify the parameterized macro PK_HAS_PROCESS ; then, we must report 

the constructor title in an explicit form. The name of the constructor must be given by the 

parameterized macro POWER_MODULE. The constructor parameters can include an arbitrary 

number of elements. However, as shown in the example, it is mandatory to specify an 

sc_module_name parameter that will be passed to the module constructor. In the initialization list, it 

is mandatory to report the constructor of the module class and the macro PK_PMB_CTOR; this 

latter stands for the constructor of power_module_b. If necessary, the initialization list may include 

the constructors of further entities, such as internal members or inherited classes. 

The power_module constructor can be expressed through the first and simpler option if these three 

conditions are true: 

    

a) except for the mandatory sc_module_name parameter, the power_module constructor does not   

    require further parameters. 

b) the module constructor requires only an  sc_module_name object as parameter. 

c) except for the constructors referred to the module and power_module_b class, the  initializa-  

    tion list does not have to include the constructors of further entities. 

  

if one of these conditions is not verified, the power_module constructor should be expressed 

through the second option. 

Within a power_module class the constructor covers an important role and must be always defined. 

In particular, as shown in sections 6.5 and 8.2, the constructor represents the place where to report 

sensitivity specifications. 

As concerns power_module destructor, it must be defined in this way: 

 

POWER_MODULE_DTOR 

{ 

 ... 

} 
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where we have used the macro POWER_MODULE_DTOR as destructor title. This is the unique 

way to express the power_module destructor; the use of a more classical form would lead to a 

wrong definition and a probable compilation error. Unlike the constructor, a destructor may be 

omitted inside a power_module class because its definition is not strictly necessary and depends 

only on specific needs. 

 

 

6.4  Output estimation type   

The configuration step b) concerns the specification of the output estimation type, i.e. if the output 

estimations are expressed in terms of energy or total commutations. Such specification implicitly 

defines also the kind of power models that can be applied, i.e. energy models or commutation 

models. This step is realized by reporting one of the following macros inside the power_module 

class: 

 

PK_USES_ENERGY_MODELS 
 
PK_USES_COMMUTATION_MODELS 
 

The first macro must be selected for energy estimations, whereas the second one for commutation 

estimations. If we want to set energy estimations in our example, we must report this instruction 

into the power_module class:   

 

POWER_MODULE_CLASS(square_input) 

{ 

 ... 

 ... 

 

 PK_USES_ENERGY_MODELS 

 

 ... 

 ... 

}; 

 

6.5  Sensitivity specifications 

The power_module constructor is the place where to define the sensitivity specifications for some 

tasks that can be part of a PKtool analysis. These tasks consist in the updating of augmented input 

ports and the evaluation of cycle-accurate power models. 

With regard to the first case, augmented signals need to have their characteristic data updated 

during a PKtool simulation; such updating is normally required when signal values change. In the 

current PKtool implementation, augmented input ports are not able to carry out this operation in an 

autonomous way. Actually, a user intervention is necessary to indicate when to execute the updating 

procedure. More into details, the user has to define an appropriate sensitivity specification inside the 

power_module constructor. From now on, we’ll refer to such specification as augmented input port 

sensitivity (AIP sensitivity). 

As an example, considering the power_module related to square_input, the AIP sensitivity could be 

defined in this way:     
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POWER_MODULE_CTOR(square_input) 

{ 

           

 PK_INPORT_SENSITIVITY 

 sensitive << clk.pos();    

 

 ... 

 ... 

} 

 

The AIP sensitivity is defined by the macro PK_INPORT_SENSITIVITY followed by explicit 

sensitivity instructions. These latter specify the events on which the updating procedure is to be 

carried out. The AIP sensitivity is set with the same syntax and rules for the sensitivity of an 

ordinary SystemC process. In the example, the AIP sensitivity consists in the positive edges of the 

clock signal. This means that the characteristic data of all the augmented input ports will be updated 

on these events, during a PKtool simulation. As general rule, the AIP sensitivity should include 

those events that can cause a change in the input port values. For a clocked module, the AIP 

sensitivity could consist in the clock triggering events.    

Now, let us consider the effects of AIP sensitivity through an example concerning the port input 

instanced in square_input. Let us suppose that this port shows the following evolution during a 

PKtool simulation :  

 

 

 

 

 
 

 

 

 

 

 

The clock period is set to 10 ns. The above representation shows the values assumed during the first 

40 ns. For simplicity reasons, this example will be focused only on the signal data related to total 

commutations (3.3).  

In compliance with the AIP sensitivity previously specified, the values used for computing the 

commutations are sampled on the positive clock edges:  

 

                                  TIME                                       SIGNAL VALUE                             

                                  10 ns                                                  0  

                                  20 ns                                                  3                                                        

                                  30 ns                                                13                                                         

                                  40 ns                                                10                                                                      

 

Accordingly, the following commutations are computed: 

 

 

10  9  13  2  3 0  

30 ns 40 ns 20 ns 10 ns 

clock 

  input 
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     TIME                                COMMUTATIONS               TOTAL COMMUTATIONS 
 
     10 ns                                            0                                                           0 

     20 ns                                            2                                               0 + 2 = 2 

     30 ns                                            3                                               2 + 3 = 5 

     40 ns                                            3                                               5 + 3 = 8 

 

The temporary values between consecutive clock cycles are not considered with this AIP 

sensitivity. In particular, coming back to the previous signal evolution, the values 2 and 9 are not 

sampled for updating total commutations.  

For applications where we want to evaluate also the contributions of temporary values, the AIP 

sensitivity should be specified in different way. More precisely, the sampling events should occur 

whenever the signal value changes. This behaviour can be achieved through these instructions: 

 

POWER_MODULE_CTOR(square_input) 

{ 

         

 //AIP sensitivity 

           

 PK_INPORT_SENSITIVITY 

 sensitive << input;   

 

 ... 

 ... 

} 

 

Now the AIP sensitivity should sample all the values assumed by the input port, comprising also the 

temporary values: 

 

      SIGNAL VALUE              COMMUTATIONS             TOTAL COMMUTATIONS                    

                0                                        0                                                 0 

                3                                        2                                     0 + 2 = 2 

                2                                        1                                     1 + 2 = 3 

              13                                        4                                     3 + 4 = 7 

                9                                        1                                     7 + 1 = 8                                                 

              10                                        2                                     8 + 2 = 10 

 

Defining the AIP sensitivity does not represent a mandatory specification. It could be required only 

if augmented input ports are instanced in a module to be monitored.  

Besides AIP sensitivity, the power_module constructor is also the place where to define sensitivity 

instructions for cycle-accurate power models (2.2). For brevity, we will refer to this specification as 

cycle-model sensitivity.  

Cycle-model sensitivity should be defined when a cycle-accurate power model is applied. This kind 

of power model should be evaluated in each simulation cycle, providing partial estimations referred 
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to single cycle times. For enabling such evaluations, it is necessary to specify explicitly the 

corresponding cycle events by means of specific sensitivity instructions. In the typical case of a 

clocked module, the cycle concept is based on the clock synchronization and the cycle events 

should consist in the clock triggering events. The following code shows how we can define cycle-

model sensitivity inside power_module constructor: 

 

POWER_MODULE_CTOR(square_input) 

{  

  

      

 PK_CYCLEMODEL_SENSITIVITY 

 sensitive << clk.pos();    

 

                

} 

 

Cycle-model sensitivity is defined by the macro PK_CYCLEMODEL_SENSITIVITY followed by  

specific sensitivity instructions. These latter declare the events on which the power model is to be 

evaluated; the form of such instructions is the same used for the sensitivity of SystemC processes. 

In the example, being square_input a clocked module sensitive to positive clock edges, the cycle-

model sensitivity has been associated to such events. 

The sensitivity specifications so far discussed have been shown by means of distinct instructions. 

However, if the triggering events are the same, it is possible to apply a simpler and unified 

specification, which can be referred to as module sensitivity. To illustrate the use of module 

sensitivity, let us consider the following situation:  

 

POWER_MODULE_CTOR(square_input) 

{  

              

 // AIP sensitivity 

            

 PK_INPORT_SENSITIVITY 

 sensitive << clk.pos();    

  

                 

  // cycle-model sensitivity 

              

  PK_CYCLEMODEL_SENSITIVITY 

  sensitive << clk.pos();    

         

} 

 

The power_module constructor reports the definitions of an AIP sensitivity and a cycle-model 

sensitivity based on the same triggering events. In this case, the previous instructions can be 

alternatively specified by module sensitivity:  

 

 

POWER_MODULE_CTOR(square_input) 

{  

            

  // module sensitivity 
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  PK_MODULE_SENSITIVITY 

  sensitive << clk.pos();    

} 

 

Module sensitivity is defined by the macro PK_MODULE_SENSITIVITY followed by specific 

sensitivity instructions. These latter must be the same reported in the AIP sensitivity and cycle-

model sensitivity.  

It is possible the coexistence between module sensitivity and explicit sensitivity specifications 

without ambiguities: 

 

POWER_MODULE_CTOR(square_input)     

{  

              

 // AIP sensitivity 

            

 PK_INPORT_SENSITIVITY 

 sensitive << inport_event;    

  

               

 // cycle-model sensitivity 

              

 PK_CYCLEMODEL_SENSITIVITY 

 sensitive << model_event;    

 

 

 

 // module sensitivity 

            

 PK_MODULE_SENSITIVITY 

 sensitive << clk.pos();      

                

} 

 

In this example, the explicit sensitivities are always prevailing over the module sensitivity. This 

means that the updating tasks for augmented input ports and cycle-accurate power models are 

executed on the notifications of inport_event and model_event. 

It is also possible a hybrid situation as illustrated below:  

 

POWER_MODULE_CTOR(square_input) 

{  

     

 // cycle-model sensitivity 

              

 PK_CYCLEMODEL_SENSITIVITY 

 sensitive << model_event; 

    

 

 // module sensitivity (specifies implicitly AIP sensitivity) 

            

 PK_MODULE_SENSITIVITY 

 sensitive << clk.pos();     

  

} 
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The updating task for a cycle-accurate power model is executed only when model_event is notified. 

However, in absence of an explicit specification, the AIP sensitivity results automatically included 

in the module sensitivity. As a consequence, if augmented input ports are instanced, their updating 

tasks are carried out on the positive clock edges. 
 

 

6.6  Instance of power_modules  

The selection of a module for PKtool analysis requires the replacement with a matching 

power_module. Similarly to augmented signals, this is simply achieved by modifying the original 

module type in the instance instruction. This operation is shown through the following description: 

 

#include "square_input.h" 

 
int sc_main ()  

{  

 

 // module instances  

 

 square_input   squin_1 ("squin_1"); 

 square_input   squin_2 ("squin_2"); 

 

 // rest of the code 

 ... 

}; 

 

In the example two square_input modules, squin_1 and squin_2, are defined in an sc_main function 

[3]. All the connection instructions and other possible entities are not involved in power_module 

instance and, therefore, have been omitted.  

If we want to select squin_1 for PKtool analysis, we must modify its instance instruction in this 

way: 

 

#include "powmod_squin.h" 

 

 
int sc_main () 

{  

 

 // module instances  

 

 POWER_MODULE(square_input)  squin_1("squin_1"); 

 

 square_input   squin_2("squin _2"); 

 

 // rest of the code 

 ... 

 

}; 
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where we have wrapped the module type in the macro POWER_MODULE. This is the only action 

to be done in the sc_main function to realize a power_module conversion. The header file 

"powmod_squin.h" must be included in order to make visible the power_module class. 

At this point, squin_1 has become a power_module and is automatically selected for PKtool 

analysis. On the other hand, this does not happen for squin_2 since its original type has not been 

modified. During a PKtool simulation, such module is not involved in PKtool analysis and retains 

its basic behaviour as in an ordinary SystemC simulation.  

In the previous example we have seen the instance of a power_module at the most global level, i.e. 

inside an sc_main function. Nonetheless, a power_module can be also instanced within a hierar-

chical architecture, in particular as submodule of another module. For example, we can consider a 

complex module that realizes a polynomial expression, and includes a square_input submodule to 

compute the square term:  

 

SC_MODULE(polynomial) 

{  

 // internal square_input module   
 

   square_input  sq_term ; 

     ... 

     ... 

 

 // constructor 

 

 polynomial( sc_module_name): sq_term("sq_term"), ... 

 { 

   ... 

 } 

 

}; 

 

The submodule is called sq_term; in the code there are reported only the instructions related to its 

instance and construction. If we want to convert sq_term into a power_module, it is necessary to 

modify only the instance instruction: 

 

#include "powmod_squin.h" 

 

 

SC_MODULE(polynomial) 

{  

 // internal square_input power_module   

 

 POWER_MODULE(square_input)  sq_term ; 

     ... 

     ... 

 

 // constructor 

 

 polynomial( sc_module_name):  sq_term("sq_term"),... 

 { 

   ... 

 } 

 

};   
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Also in this case, the original module type must be wrapped in the macro POWER_MODULE. The 

construction and connection instructions are not to be modified. The power_module related to 

sq_term is indirectly instanced whenever a polynomial module is instanced. When this happens, 

such power_module is automatically selected for PKtool analysis. 

The power_module conversion can be carried out also for a module created dynamically. To show 

this situation, let us consider a variant of the polynomial class in which sq_term is created 

dynamically in the constructor body: 

 

SC_MODULE(polynomial) 

{  

 // internal square_input power_module   

 

 square_input*  sq_term ; 

     ... 

    

 // constructor 

 

 polynomial(sc_module_name) 

 { 

   sq_term = new square_input("sq_term"); 
 

   // connection instructions 

      ... 

 

 }; 

};  

  

In this case, the power_module conversion requires to modify the instructions involving the original 

type; in particular, the pointer declaration and the construction: 

 

#include "powmod_squin.h" 

 

 

SC_MODULE(polynomial) 

{  

 // internal square_input power_module   

 

 POWER_MODULE(square_input)*  sq_term ; 

     ... 

 

 // constructor 

 

 polynomial( sc_module_name) 

 { 

   sq_term = new POWER_MODULE(square_input)("sq_term"); 
 

   // connection instructions 

    ... 

 

 }; 

 

};  
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7  POWER MODEL AND STATIC DATA SPECIFICATION 

 

 

7.1  Introduction  

Unlike the settings so far described, the configuration steps c) and e) do not require a realization at 

code level but are based on a procedure at the beginning of a PKtool simulation. More precisely, 

such steps are based on an interaction with the command prompt window. The specific details will 

be shown through a simulation example that involves the power_module squin_1, as instanced in 

the sc_main function shown in 6.6 . 

 

 

7.2  Interaction with the command prompt window 

When a SystemC simulation is started on the system to which squin_1 belongs, automatically also a 

PKtool simulation is activated. First of all, this text appears on the command prompt window: 

 

--------------------------------------------- 

     POWER_MODULE: squin_1  

--------------------------------------------- 

 

OPTIONS FOR SPECIFYING THE POWER MODEL   

 

1: interaction with window 

2: reading from configuration file   

3: no monitoring  

 

select an option (1, 2, or 3) = 

 

The headline declares the name of the considered power_module; all the data that will be 

communicated regard such power_module. Initially, the user is required to select one of three 

options identified by the numbers 1, 2, and 3. The first two options have to do with the modalities to 

communicate the power model data; the third option disables the power_module in the current 

PKtool simulation. From now on, we will refer to this initial task as preliminary window menu. 

The option 1 allows to specify the data through an interaction with the command prompt window, 

whereas the option 2 through a pre-existent text file (configuration file); this latter must be defined 

according to suitable layout rules. The first time that the power_module is included in a PKtool 

simulation, it is always convenient to select the option 1. In this way, the configuration file will be 

automatically created by PKtool with the same data specified in the window interaction. This 

modality will be further explained in 7.4. Finally, the option 3 should be considered when several 

power_modules are instanced but only a subset of them is to be monitored for PKtool analysis.  

Coming back to our example, let us select the option interaction with window by writing 1 in the 

request sentence and pressing return. As result, this text is displayed: 
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estimation type: energy 
model library selected: pk_default_energy_lib 
available power models: 9 
related numeric indexes: 0 1 2 3 4 21 22 23 41 
 
power model = 
 

The first four sentences are information about the enabled model library: estimation type, name, 

number of power models, related model indexes. These information reflect the fact that the 

estimation type has been set in terms of energy, as specified in the power_module class (6.4), 

determining consequently the applicable power models.  

The power model is selected through the final request sentence, which asks the user to insert the 

related numeric index. In this simulation, we might assume a power dissipation modelled by the 

power model with numeric identifier 3. This model is called model_3, and is based on the following 

formula: 

 

Energy =   c Cap Vdd Comm 
 

which is derived from the dynamic energy consumption in CMOS technology. In the formula, c is a 

float proportionality coefficient, Cap an equivalent capacitance, Vdd the applied power supply. These 

parameters represent static data and must be provided by the user. Comm is the sum of the 

commutations of all the augmented signals, as occurred during the simulation. Comm is a dynamic 

data and is automatically computed in the course of the simulation, by means of augmented signal 

capabilities.  

For selecting this power model, the user must specify its numeric index in the request sentence. In 

this way, the configuration step c) is realized. 

Thereafter, this text is displayed: 

 

power model:  model_3     numeric index: 3 
coefficient  (units) =  
 

Now the user is asked to provide the static data of the power model. First of all it is required the 

proportionality coefficient; as specified, this value must be reported in units. In this example, we 

might assume a coefficient equal to 3.  

In the following of the interaction, there are displayed the request sentences to assign the other 

static data of the model: 

 

power supply  (V) =  
 

As concerns the power supply, we might assume 3.3 V. 

 

capacitance  (nF) = 
 

The equivalent capacitance might be set to 12 nF.  
At this point, all the static data have been communicated and the configuration step e) is thus 

realized. The specification procedure reaches its termination and PKtool is provided with all the 

information for executing power estimations on squin_1 module. The SystemC/PKtool simulation 

2
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resumes its course, continuing with the appearance of an ordinary SystemC simulation. At the end 

of the simulation, the estimation results will be reported in a suitable text file. 

The considered example has shown the simplest case in which only one power_module is instanced. 

If several power_modules had been instanced, the specification procedure would have been carried 

out for each of them, following a sequential path based on their construction order. 

 

 

7.3  Configuration file 

At the end of the interaction with the command prompt window, PKtool automatically creates a 

configuration file whit all the data specifying the selected power models. This file is formatted 

according to suitable rules, and is reported in the directory where the system project files are 

located. During a PKtool simulation, a configuration file is created for each power_module.  

In our example only one configuration file is created, in reference to the  squin_1 power_module. 

Such file is called pk_squin_1_cfg, in compliance with the naming rule: 

 

                                               pk_pmname_cfg 
 

where pmname is the name of the power_module. 

Considering the case of pk_squin_1_cfg, the content of a configuration file is represented by this 

text: 

 

  1)  Configuration file    power_module: squin_1 
  2) 
  3)  monitored power_module (Y/N)= Y 
  4) 
  5)  enable window menu (Y/N)= Y 
  6) 
  7) 
  8)   
  9)  estimation type: energy 
10)  model library selected: pk_default_energy_lib 
11)   available power models: 9 
12)   related indexes: 0 1 2 3 4 21 22 23 41  
13) 
14) power model: model_3  numeric index: 3 
15)  coefficient (units) = 3 
16)  power supply (V) = 3.3 
17)  capacitance (nF) = 12 
 

In the real configuration file there are no line indexes, here inserted only for a better reference to the 

text. Lines 9-12 show the information concerning the power model library. Subsequently, it is 

reported the selected power model (line 14) with the specific static data (lines 15-17). Line 3 

declares if the power_module is enabled for PKtool simulations, with reference to the preliminary 

window menu. More precisely, its value is assigned to Y (yes) if the option 1 or the option 2 is set. 

In the case the option 3 is selected, this setting is assigned to N (no). Line 5 specifies if the 

preliminary window menu is to be enabled. This other setting represents an optimization that allows 

to speed up the initial phase of a PKtool simulation. Normally, this setting is assigned to Y (yes), so 

enabling the interaction with the preliminary window menu. If it were assigned to N (no), the 

preliminary window menu would be automatically skipped and the reading from the configuration 
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file would be the option implicitly selected. The settings of lines 3 and 5 will be further discussed in 

the next section, where they will be simply referred to as line-3 and line-5 settings. 

 

 

7.4  Reading from configuration file    

Let us consider again the preliminary window menu for the power_module squin_1: 

 

--------------------------------------------- 

     POWER_MODULE: squin_1 

--------------------------------------------- 

 

OPTIONS FOR INSERTING CONFIGURATION AND MODEL DATA 

 

1: interaction with window 

2: reading from configuration file  

3: no monitoring  

 

select an option (1, 2, or 3) = 

 

If the option 2 is selected, the configuration steps c) and e) are realized by reading the data directly 

from the configuration file, without further interactions with the command prompt window. This 

brings to an easier specification, representing the best solution when several PKtool simulations are 

carried out with the same configuration data.    

The option 2 can be selected only if the configuration file is already defined. As previously said, the 

user can avoid to define directly this file because it is automatically created by PKtool when the 

option 1 is selected. The data reported in the file are the same specified by the user through the 

interaction with window.    

The first time that a power_module is involved in PKtool simulations, the configuration steps c) and 

e) should be always realized by selecting the option 1. In this way, the configuration file will be 

created without any user intervention, making the option 2 applicable for the next simulations. Such 

solution is always correct until the power_module configuration is left unchanged with respect to 

the data of the steps c) and e). In case the user wants to modify such data and run PKtool 

simulations under a different configuration, the approach to follow depends on which data have to 

be modified. More precisely, if the user wants to change only the static data required by the power 

model, this can be made directly on the configuration file. For the next PKtool simulations it will be 

still possible to select the option 2, since the new static data will be correctly read from the updated 

file. 

As an example, let us consider the configuration file for the power_module squin_1, as reported in 

the previous section. If we want to specify different static data, by changing the proportionality 

coefficient from 3 to 5 and the power supply from 3.3 V to 3.8 V, we should modify the file in this 

way:  
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  1)  Configuration file    power_module: squin_1 
  2) 
  3)  monitored power_module (Y/N)= Y 
  4) 
  5)  enable window menu (Y/N)= Y 
  6) 
  7) 
  8)   
  9)  estimation type: energy 
10)  model library selected: pk_default_energy_lib 
11)  available power models: 9 
12)  related indexes: 0 1 2 3 4 21 22 23 41  
13) 
14) power model: model_3  numeric index: 3 
15)  coefficient (units) = 5 
16)  power supply (V) = 3.8 
17)  capacitance (nF) = 12 
 

After saving the file, the new static data will be enabled for the next PKtool simulations. 

A different situation takes place when the user wants to change the power model to be applied. In 

fact, this operation cannot be made through a direct modification of the configuration file. In this 

case, at least in the first simulation with the new power model, the proper solution would be to 

select the option 1 and communicate the new power model and its static data via the window 

interaction. In this way, a new configuration file will be automatically created by PKtool with the 

new data. As long as the applied power model remains the same, such file will be valid to run 

PKtool simulations through the option 2 of the preliminary window menu. 

The configuration file reports two specifications introduced in the previous section as line-3 and 

line-5 settings. The line-3 setting allows to select the option 3 of the preliminary window menu 

directly from the configuration file. This means that if this setting is assigned to N, the 

power_module will not be monitored in the next PKtool simulations, and the preliminary window 

menu will be automatically skipped. In order to make the power_module monitorable again, this 

setting must be assigned to Y by the user.  

The line-5 setting allows to skip automatically the preliminary window menu, with the implicit 

selection of the option 2. This is what happens if this setting is assigned to N. In this way, at the 

beginning of a PKtool simulation, the user is exempted from the interaction with the preliminary 

window menu and the explicit selection of the option 2. The typical situation for exploiting the line-

5 setting is when a power_module is involved in several simulations in which the option 2 is used. 

Whenever the configuration file is automatically created by PKtool, the line-5 setting is always 

assigned to Y (yes). 
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8  CHARACTERIZATION BASED ON POWER STATES 

 

 

8.1 General description and application cases 

The basic version of a PKtool simulation provides an overall estimation referred to the whole 

simulation period. However, it is possible to configure more refined analysis, in which to set up 

partial estimations referred to specific simulation phases. Furthermore, it is also possible to change 

the applied power model in each of the monitored phases. In other words, different simulation 

phases can be associated to different power models with respect to model formulation or model 

data. In PKtool analysis this opportunity may be realized through a power state configuration.  

A power state defines an operative condition that can be handled as a stand-alone context during a 

PKtool simulation. In concrete terms, it is possible to achieve partial estimations referred to the time 

periods in which the considered condition is valid. A power state characterization leads to subdivide 

the functionality of a module into complementary conditions, each associated to a specific power 

state. In this way, PKtool analysis may be extended towards the following targets:  

 

a) evaluating the power dissipation in specific time periods. 

 

b) reproducing power management technique based on the run-time change of  model data. 

 

c) applying different power models to evaluate different operative conditions. 

 

Briefly discussing these applications, the case a) concerns situations where we want to examine the 

power dissipated in sub-intervals of the simulation time. In this case, the applied power model could 

be the same for all the power states representing the system functionality. During a simulation, this 

power model can be computed several times to estimate the power dissipations referred to each time 

sub-interval. The case b) is a variant of the case a), with the aim to reproduce power optimization 

techniques such as dynamic voltage/frequency scaling [5]. In this situation, the power states are 

associated to a power model that can be subject to variations in its model data, on the basis of the 

run-time evolution. A power state characterization allows to separate simulation phases in which the 

model data are fixed. The transition from a power state to another one takes place when the model 

data are assigned to new values, in consequence of the power optimization strategy. When this 

happens, a partial power estimation is computed by evaluating the power model using the old model 

data. In this way, it is possible to cover properly the effects of power optimization techniques in the 

estimation procedure. In the case c), the target is to differentiate the applied power model on the 

basis of the operative conditions. This solution may be considered when different working phases 

are better characterized if associated to different power models.  

It is important to underline how power state characterization is a facultative step and should be 

considered only if the specific analysis targets are to be achieved. In any case, implementing this 

approach entails an additional overhead in modeling and simulation efforts.  

 

 

8.2  Realization of a power state characterization  

This section shows how to realize a power state characterization when configuring a module for 

PKtool analysis. A relevant part of this step consists in definitions reported inside the 

power_module class, which can be illustrated through an example on the square_input 

power_module.  

First of all, it is necessary to define a power state subdivision for the square_input functionality. For 

this purpose, we could consider three complementary conditions: normal computation, standby 

condition and overflow condition. These working situations could be associated to three distinct 
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power states, called respectively ‘normal_st’, ‘standby_st’, and ‘overflow_st’. The declaration of 

these power states is realized by the following instruction in the power_module class: 

 

POWER_MODULE_CLASS(square_input ) 

{ 

 ... 

 PK_POWER_STATES{standby_st, normal_st, overflow_st}; 

 ... 

} 

 

The instruction begins with the macro PK_POWER_STATES followed by an enumeration of the 

power states enclosed in curly brackets. In addition to define the three power states, this declaration 

sets also a relative order in which, going from left to right, standby_st is the first power_state, 

normal_st the second and overflow_st the third. In compliance with this order, the power_states are 

associated to increasing integer identifiers starting from 1: standby_st to 1, normal_st to 2, and 

overflow_st to 3. It is via such identifiers that the power states can be referenced in some specifi-

cation tasks. 

After that, it is necessary to define a state machine that updates the current power state during a 

PKtool simulation. From now on, such state machine will be referred to as powerFSM. In C++ 

language a classical way for implementing a state machine is by means of the switch-case construct. 

In PKtool applications, the powerFSM is defined through a different solution based on updating 

functions. More precisely, for each power state a distinct updating function must be defined; this 

latter describes the rules for determining the next power state when the associated power state is the 

current one.  

In our example, a possible implementation of the updating functions may be the following:  
 

// updating function for normal_st    

 

PK_STATE_FC( normal_st ) 

{  

  if ( standby == true ) return standby_st;  

  if (input.read( ) >= over_value ) return overflow_st;  

  return normal_st;    

}; 

 

 

// updating function for standby_st 

 

int stb_cnt; 

 

PK_STATE_FC(standby_st)     

{ 

 while(stb_cnt < 3) 

 { 

  ++stb_cnt; 

  return standby_st; 

 }; 

 if(standby == true)         

   return standby_st; 

 else 

 { 

  stb_cnt = 1; 

  if(input.read() >= over_value) return overflow_st;  
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  else return normal_st; 

 }; 

}; 

 

 

// updating function for overflow_st 

 

PK_STATE_FC( overflow_st ) 

{  

 if(standby == true) return standby_st; 

 else if(input.read() >= over_value) return overflow_st; 

 else return normal_st; 

}; 

 

The title of each function is given by the parameterized macro PK_STATE_FC  with the name of 

the related power state as parameter. The body of each function reports the instructions to determine 

the next power state, specified through the return value. To this end, an updating function can have 

a direct access to all the public/protected members defined in the module class (in particular the I/O 

ports), and to all the members defined in the power_module class. 

In order to complete the powerFSM implementation, it is necessary to specify when to execute the 

updating functions. This matter is addressed by defining the powerFSM sensitivity. During a PKtool 

simulation, the updating functions are automatically executed to set the future power state. This task 

is under the control of the PKtool simulation engine, which calls the function associated to the 

current power state in suitable triggering events. These latter represent the powerFSM sensitivity.    

PowerFSM sensitivity must be specified inside the power_module constructor, with the same 

instructions used for the sensitivity of ordinary SystemC processes. As general rule, powerFSM 

sensitivity should consider those events which can cause a power state change, that is the events 

causing the transitions between the associated operative conditions. For this purpose, it is often 

sufficient to consider the triggering events for the module functionality.                                                                                   

There are two ways for specifying powerFSM sensitivity. The first solution consists in a dedicated 

instruction, whereas the second one is based on power_module sensitivity (6.5). In our example, the 

powerFSM sensitivity is constituted by the positive clock edges, which represent the triggering 

events for the square_input processes. Using a dedicated instruction, the powerFSM sensitivity is 

defined in this way:    

 

POWER_MODULE_CTOR(square_input) 

{ 

 

  POWERFSM_SENSITIVITY 

  sensitive << clk.pos();    

 

  ... 

  ... 

} 

 

where we have used the macro POWERFSM_SENSITIVITY followed by the specific sensitivity 

instructions. At this point, the powerFSM is entirely specified, and this completes the power state 

configuration inside the power_module class.  

Alternatively, the powerFSM sensitivity may be implicitly incorporated in the module sensitivity:  
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POWER_MODULE_CTOR(square_input) 

{ 

 

 PK_MODULE_SENSITIVITY 

 sensitive << clk.pos();    

 

 ... 

 ... 

} 

 

If module sensitivity and  powerFSM sensitivity were both reported, as in the following example 

 

POWER_MODULE_CTOR(square_input) 

{ 

 

  PK_MODULE_SENSITIVITY 

  sensitive << clk.pos();    

 

  POWERFSM_SENSITIVITY 

  sensitive << FSM_event;    

 

  ... 

  ... 

 

} 

 

the explicit instruction always prevails over the module sensitivity. In the considered example, this 

means that the updating functions will be executed whenever the FSM_event is notified, and only in 

this case. 

When the triggering events of powerFSM sensitivity are the same of the other possible sensitivity 

specifications (i.e. AIP and cycle-model sensitivity), the simplest solution is to report only the 

module sensitivity inside the power_module constructor. This may be the case of a module whose 

functionality is triggered only by clock events.  

 

 

8.3  Power model specification and configuration file 

When realizing a power state characterization, the configuration steps c) and e) are handled 

similarly to a basic configuration with the extension of the specification tasks for each power state. 

Considering again the example presented in 7.2, at the beginning of a PKtool simulation the 

preliminary window menu is displayed on the command prompt window: 

 

--------------------------------------------- 

     POWER_MODULE: squin_1  

--------------------------------------------- 

 

OPTIONS FOR SPECIFYING THE POWER MODELS 

 

1: interaction with window 
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2: reading from configuration file   

3: no monitoring  

 

select an option (1, 2, or 3) = 

 

The layout and meaning of the text are the same of a basic PKtool simulation. If the power model is 

specified via window interaction, by selecting the option 1: 

 

number of power states: 3 
estimation type: energy 
model library selected: pk_default_energy_lib 
available power models: 9   
related numeric indexes: 0 1 2 3 4 21 22 23 41 
 
Initial state = 
 

The first five sentences are for informative purpose and report the number of power states, the 

estimation type and the features of the used model library. The final sentence is a request not 

present in a basic PKtool simulation, which asks to specify the initial power state through its 

numeric identifier. This value is used to initialize the powerFSM at the beginning of the simulation. 

When the powerFSM is triggered the first time, it is executed the updating function related to the 

initial power state. In our example, we can assume that squin_1 starts from a normal working 

condition; this latter is associated to the power state normal_st, whose numeric identifier is 2. 

The successive tasks concern the specification of the power model and its static data for each power 

state. This means that the interactive requests described in 7.2 will be repeated for each power state, 

going from the first one to the last one. In our example, we could suppose an application where 

different power states are associated to different power models. Continuing in the window 

interaction, the user must define the power model for the first power state, i.e. standby_st: 

 

1st  POWER STATE 
  

 power model =  
 

For this power state we might consider the power model fixed_power (11.2), based on a constant 

power dissipation and identified by the index 0.  

Thereafter, it is required the power dissipation related to fixed_power: 

 

power model:  fixed_power     numeric index: 0 
power (mW) =  
 

We could assume this quantity equal to 0,2 mW. The power model does not need other static data; 

the power model specification for the first power state is so completed.  

In the following, the power model specification is repeated for the other two power states with the 

same modalities: 
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2nd  POWER STATE 
  

 power model =  
 

The second power state is normal_st and could be associated to the power model model_3, whose 

numeric identifier is 3. As explained in 7.2, the static data required by such model are the 

proportionality coefficient, the equivalent capacitance and the power supply: 

 

power model:  model_3     numeric index: 3 
proportionality coefficient  (units) =  
 
equivalent capacitance  (nF) =  
 
power supply  (V) =  
 

As concerns the proportionality coefficient, we could assume the value 3; the equivalent 

capacitance and power supply might be assigned respectively to 12 nanofarad and 3.3 Volt. The 

model specification for the second power state is so completed.  

Finally, the specification procedure is carried out for the third power state: 

 

3rd  POWER STATE 
  

 power model =  
 

This power state is overflow_st and could be associated to the power model fixed_power, 

analogously to standby_st. In the overflow state, the power dissipation required by fixed_power as 

static data could be assigned to 0.8 milliWatt. 

At this point, the window interaction is completed and PKtool is provided with all the elements for 

estimating the power dissipation in each power state. Like a basic PKtool simulation, a 

configuration file is automatically created with all the information specified via the window 

interaction. In this case, the contents of such file are more articulated than a basic format. More in 

detail, this is the configuration file generated from the window interaction previously illustrated:      
                       

  1)     Configuration file    power_module: squin_1 
  2)    
  3)     monitored power_module (Y/N)= Y 
  4)    
  5)     enable window menu (Y/N)= Y 
  6)    
  7)    
  8)    number of power states: 3 
  9)    estimation type: energy 
10)    model library selected: pk_default_energy_lib  
11)    available power models: 9 
12)    related indexes: 0 1 2 3 4 21 22 23 41  
13)    initial power state = 2   
14)     
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15)    1st POWER STATE 
16)     
17)      power model: fixed_power  numeric index: 1 
18)      power (mW) = 0.2  
19) 
20)     
21)    2nd POWER STATE 
22)     
23)      power model:  model_3     numeric index: 3    
24)      proportionality coefficient  ( adimensional units) = 3 
25)      equivalent capacitance  (nF) = 12 
26)      power supply  (V) = 3.3         
27)     
28)     
29)    3rd POWER STATE 
30) 
31)      power model: fixed_power  numeric index: 1 
32)      power (mW) = 0.8 
 

The contents of the first lines are the same of the basic format. In addition, Lines 8-13 report the 

number of power states and the initial power state. In the following, the power model specifications 

are reported for each power state (lines 15-18, 21-26, 29-32).  

Like a basic configuration, this file can be used for a fast specification of the power models through 

the option 2 of the preliminary window menu. It is also possible to modify the data reported in the 

file and read the new configuration from the updated file. The feasibility of this solution depends on 

which data should be changed. In particular, if the user wants to modify the initial power state 

and/or the static data required by the power models, these modifications can be made directly on the 

configuration file. In the successive simulations, it will be possible to use the updated file in 

application with the option 2 of the preliminary window menu. 

The situation is different if the user wants to change the power models associated to the power 

states, because this cannot be made through a direct modification of a pre-existent configuration 

file. In this case, at least in the first PKtool simulation with the new configuration, it is necessary to 

specify the power models via the window interaction. In this way, a new configuration file will be 

automatically generated with the updated data. 

 

 

8.4  Behaviour of augmented signals in a power state characterization  

The data provided by augmented signals are affected by a power state characterization. During a 

simulation, such data can be reset and re-computed according to the power state changes, such that 

their values are referred to the active times of the triggered power states. When a power state 

change occurs, the data provided by the augmented signals are passed to the power model of the 

past power state, in order to calculate a partial energy estimation. After that, the augmented signal 

data are reset and their computation can re-start for the new power state. These operations can be 

repeatedly carried out whenever a power state change occurs, until the end of the simulation.       

In order to show concretely this behaviour, let us consider an example based on this augmented 

signal:  

 

sc_uint_aug<16> bus; 
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Let us suppose this signal belongs to a module configured through three power states; we will refer 

to these power states simply as st_A, st_B, st_C. Now, let us consider this possible power state 

evolution during a PKtool simulation: 

 

   

 

 

 

 

 

Let us suppose these assignments for the bus signal: 

 

 

                                  TIME                                       SIGNAL VALUE                             

                                    0 ns                                                  0 (initial value)                                                       

                                  10 ns                                                  2                                                         

                                  20 ns                                                  5                                                         

                                  30 ns                                                16                                                         

                                  60 ns                                                  4                                                         

                                   70 ns                                                  7                                                         

                                  90 ns                                                   8                                                         

                                100 ns                                                   5                                                         

                                110 ns                                                 10   

                                120 ns                                                   6                                                      

 

For simplicity reasons, in this example we can consider only the augmented signal data related to 

total commutations. According to the previous evolution, the total commutations provided by the 

bus signal are the following:  

 

     TIME                                COMMUTATIONS               TOTAL COMMUTATIONS 
 
       0 ns                                            0                                                           0 

     10 ns                                            1                                               0 + 1 = 1 

     20 ns                                            3                                               1 + 3 = 4 

     30 ns                                            3                                               4 + 3 = 7 

     60 ns                                            2                                               0 + 2 = 2 

     70 ns                                            2                                               2 + 2 = 4 

     90 ns                                            4                                               0 + 4 = 4  

   100 ns                                            3                                               4 + 3 = 7 

0 ns 30 ns 80 ns 100 ns 120 ns 

st_A st_B st_A st_C 
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   110 ns                                            4                                               0 + 4 = 4 

   120 ns                                            2                                               4 + 2 = 6 

 

The middle column reports the commutations occurred between two contiguous assignments, 

whereas the most right column the total commutations. When a power state change occurs, the total 

commutations are reset and their computation re-starts for the new power state. In the above 

scheme, this behaviour can be observed at the times 60ns, 90ns and 110ns. The past value of the 

total commutations represents the commutations occurred during the active periods of the past 

power state. Such data are provided to the power model associated to the past power state, in case 

such model requires total commutations in its formulation.  
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9  ANALYSIS RESULTS   

 

 

For each power_module, the results of a PKtool simulation are reported in a distinct text file (result 

file), automatically created at the end of the simulation. Like configuration files, the result files are 

put in the directory where the system project files are located. A result file contains only the output 

estimations of the last PKtool simulation; estimation results related to previous simulations are 

automatically overridden. For a given power_module, the result file is named according to the 

format: 

 

                                               pk_pmname_res 
 

where pmname is the name of the power_module. Accordingly, in the case of the squin_1 

power_module the result file is called pk_squin_1_res.  

As an example, we can consider the contents of pk_squin_1_res as could appear at the end of the 

simulation described in section 7: 

 

1) *************** SIMULATION RESULTS *************** 
2) 
3) 
4) overall simulation period: [0 - 650 ns] 
5) 
6) overall energy estimation: 1.01934e-005 J 
7) average power estimation: 15.6821 W 
 

The first sentence (line 4) specifies the overall simulation period, in this example supposed equal to 

650 ns. Lines 6-7 report the estimation results, given by the energy and average power dissipated in 

the simulation period. The average power is derived from the ratio between the energy estimation 

and the simulation period.  

What has been shown is a typical result file for a configuration without power states. In the case of 

a power state characterization, the results are expressed in a more complex format. More precisely, 

there are reported also the partial estimations referred to the active periods of the power states. To 

show this format, we can consider the squin_1 power_module in the configuration described in 8.2 

and based on three power states. Let us suppose that a PKtool simulation has been executed with the 

following power state evolution:   

 

                                               
                                                          

0                           350              500                 700   750                    1000 ns 

 

In this case, the result file could be defined as follows: 

 

 

 1)   *************** SIMULATION RESULTS *************** 
 2)       

standby normal 
over- 
flow normal normal 
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 3)     
 4)   simulation period: [ 0 s - 350 ns ]  power state: 2   
 5)   partial energy estimation: 5.4e-010 J 
 6)   average power estimation: 0.00154 W 
 7)    
 8)   simulation period: [ 350 ns - 500 ns ]  power state: 1 
 9)   partial energy estimation: 3e-011 J 
10)   average power estimation: 0.0002  W 
11) 
12)   simulation period: [ 500 ns - 700 ns ]  power state: 2 
13)   partial energy estimation: 3.8e-010 J 
14)   average power estimation: 0.0019 W 
15)    
16)   simulation period: [ 700 ns - 750 ns ]  power state: 3 
17)   partial energy estimation: 4e-011 J 
18)   average power estimation: 0.0008 W 
19)    
20)   simulation period: [ 750 ns - 1000 ns ]  power state: 2 
21)   partial energy estimation: 4.7e-010 J 
22)   average power estimation: 0.00188 W 
23)    
24)    
25)   total state changes: 4 
26)    
27)    
28)   overall simulation period: [0 - 1000 ns] 
29)    
30)   overall energy estimation: 1.46e-009 J      
31)   average power estimation: 1.46e-003 W 

 

The text reports the partial estimations referred to the power states triggered during the simulation 

(lines 4-6, 8-10, 12-14, 16-18, 20-22). For each estimation, it is specified the simulation period and 

the power state via its numeric identifier. The estimations in standby_st and overflow_st are 

compliant with the associated power models, based on fixed power dissipations respectively equal 

to 0.2 mW and 0.8 mW. As concerns the estimations in the normal_st power state, the applied 

power model depends on the total commutations of the augmented signals.  

Line 25 reports the number of power state changes occurred during the simulation. Finally, lines 30-

31 show the energy and power estimations related to the whole simulation period. The overall 

energy estimation is given by the sum of the partial estimations referred to the single power states. 
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10  SIMULATION TIME SPECIFICATION 

 

During a PKtool simulation, the overall simulation time is measured by PKtool to calculate the 

average power estimations. In particular, PKtool acquires the simulation time by calling the 

SystemC function sc_time_stamp [3], at the end of the simulation. However, in some situations the 

overall simulation time is not specified explicitly and the value returned by sc_time_stamp could 

not be correct with respect to the effective time duration. This could happen when the function 

sc_start [3] is called without a time reference passed as input argument.  

To circumvent this issue, PKtool provides the function pk_set_simtime, which allows an explicit 

definition of a simulation time visible only in PKtool analysis. This function should be called in the 

sc_main, before the declaration of sc_start. The use of pk_set_simtime is shown in the following 

example: 

 

int sc_main () 

{  

 

 sc_core::sc_time sim_time(1000, SC_NS); 

  

 pk_set_simtime(sim_time); 

 

 ... 

 ... 

 

 sc_start(); 

 

}; 

 

pk_set_simtime requires an sc_time object as input argument; this latter represents the overall 

simulation time used in PKtool estimation tasks.  
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11  DEFAULT MODEL LIBRARIES 

 

 

11.1  Introduction     

PKtool is endowed with some predefined power models that can be directly applied in power 

estimations. These models are incorporated into two default libraries, pk_default_energy_lib and 

pk_default_comm_lib. Such libraries should be considered as dynamic entities that can be enhanced 

with the addition of new elements. 

This section reports an in depth description of the power models contained into the default libraries, 

excluding the transaction level models; these latter are covered in the specific documentation. Each 

model will be illustrated underlining model formulation and model data, according to the 

characterization discussed in 2.1. Model data are dealt with considering the distinction between 

dynamic and static data. The first category concerns information automatically computed by PKtool 

and mainly related to time and signals statistics. Conversely, static data must be specified by the 

user through the procedures shown in sections 7-8. 

 

 

11.2  Power models in pk_default_energy_lib  

At the present time, without considering transaction level models, this library contains nine power 

models with integer identifiers in the ranges  [0 – 4, 21–23, 41].  

 

1) fixed_energy: this power model is associated to the integer index 0, and provides energy 

estimations (Energy) according to the formula:  

 

Energy = E 
 

The model returns a constant energy value as estimation. The required data is the energy value (E), 

which is expressed in nanojoules and must be provided by the user.  

 

 

2) fixed_power: this power model is associated to the integer index 1, and provides energy 

estimations according to the formula: 

 

Energy =  PT 
 

The model is referred to a constant power dissipation, and the estimation is given by the product 

between the power (P) and the simulation time (T). The power value is expressed in milliwatts and 

must be provided by the user; the simulation time is computed by PKtool.  

 

 

3) model_2: this power model is associated to the integer index 2, and provides energy estimations 

according to the formula: 

 

Energy = c Comm 
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In this case, the estimation is given by the product between a float proportionality coefficient (c) 

and the sum of the total commutations of all the augmented signals (Comm). The proportionality 

coefficient is expressed in nanojoules and must be provided by the user; the Comm term is 

computed by PKtool.  

 

 

4) model_3: this power model is associated to the integer index 3, and provides energy estimations 

according to the formula: 

 

Energy =  c Cap Vdd Comm 

 

which is derived from the dynamic energy consumption in CMOS technology. In the formula, c is a 

float proportionality coefficient, Cap an equivalent capacitance, Vdd the applied power supply, and 

Comm is the sum of the commutations of all the augmented signals. The proportionality coefficient 

is expressed in units, the equivalent capacitance in nanofarads, and the power supply in Volt. Such 

data must be provided by the user. The Comm term is computed by PKtool.  

 

 

5) model_4 : this power model is associated to the integer index 4, and provides energy estimations 

according to the formula: 

 

                                Energy =     Ng ( Vdd Ileak T   +      Cavg Vdd  Comm  ) 
 

In the above expression Ng is the number of gates of the monitored module. The terms in the round 

bracket stand for the static and dynamic components of the energy dissipated by a single gate. Ileak is 

the average leakage current, Vdd is the applied power supply, Cavg is the average gate capacitance, 

Comm represents the average commutations per gate. This latter value is estimated by averaging the 

total commutations of all the augmented signals. Finally, T is the simulation time.   

Ng is expressed in adimensional units, Ileak in nanoamperes, Vdd in Volt and Cavg in nanofarads. 

Such data must be provided by the user. T and Comm  are computed by PKtool.  

 

 

The next power models (in the range 21 – 23) are table-based power models [1]. In this case model 

formulation is given by a discrete representation mapped into a lookup table. The energy values 

stored in the lookup table are addressed by some compact form of information regarding the module 

environment.  

The association between addressing information and table values is typically determined through a 

preliminary characterization phase [1]. This latter consists in accurate low-level power simulations 

of the module, based on input training patterns reproducing somehow the addressing information. 

The measures coming from these simulations lead to define the energy values stored in the table.  

Augmented signals can cover an important role in the handling of the lookup table. In fact, in many 

cases, the addressing information are referred to signal statistics such as input-output switching 

activity or signal probability. During a PKtool simulation, such quantities can be extracted only 

from those signals that have been converted into their augmented counterparts. As a consequence, 

the application of a table-based power model may require the instance of several augmented signals. 

For example, if the addressing information were constituted by the average commutations of the 

input ports, the user should augment all the input ports of the module or an appropriate subset of 

them.  

2

2

2

1 
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During a simulation, all the tasks concerning lookup table handling are carried out by PKtool in 

automatic way. As typical static data, table-based power models require the information to build 

lookup tables, in particular the discrete values of the addressing information and the stored energy 

estimations. The power models currently available have been derived from the approaches 

illustrated in [6-8] . 

 

6) table_1: this power model is associated to the integer index 21, and provides cycle-accurate 

estimations (2.2). The model is based on a one-dimension lookup table; the stored energy 

estimations are function of the average Hamming distance (average Hd) between consecutive input 

vectors. During each simulation cycle, an energy estimation is computed by extracting the table 

value addressed by the average Hd between the current and the previous input vector. At the end of 

the simulation, the overall estimation is given by the sum of all the cycle estimations extracted from 

the table. This model is based on the approach described in [6], where its application is shown for 

datapath components. 

In this context, the average Hd is a float value in the range [0-1] defined by this formula: 

 

                                                     Σ 

                                                     Σ 

 

where N is the number of monitored input ports, h( ) is the Hamming distance between two 

consecutive port values, and size( ) is the bit size of a single port. The application of this model 

requires to augment all the input ports of the module, or an appropriate subset of them. This will 

allow to compute the average Hd values during a simulation. 

The user must provide the information necessary to build the lookup table, i.e. the addressing Hd 

values and the stored energy estimations. These information are specified through the interactive 

procedure at the beginning of a PKtool simulation.  We can now consider the essential details of 

this task. 

First of all, it is required the number of elements stored in the table: 

 

number of stored energy values (positive integer) =    
 

The user must write the corresponding value. In this example, we can assume a lookup table with 4 

elements. Then, there are required the values of average Hd used for addressing the table: 

 

Hd values (4 float values) = 
 

the user must report a sequence of four float values, separated at least by one blank. These values 

must be in the range [0-1] and must be written in increasing order. In this example, we could 

consider this sequence: 0.1  0.3  0.5  0.8 . 

Finally, the energy estimations stored in the table must be specified: 

 

corresponding energy values ( nJ )  = 
 

i = 1
h(si) 

size(si) 
i = 1 

N 

N 
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The user must report a sequence of four float values, separated at least by one blank. The energy 

estimations are expressed in nanojoules, and their order must correspond with the table indexes 

previously declared. In our example, if this sequence is reported: 3.4  4.5  4.9  7.8, the association 

between addressing inputs and energy estimations is the following: 

                              

0.1          3.4 nJ 

0.3              4.5 nJ 

0.5              4.9 nJ 

0.8              7.8 nJ 

 

After that, the lookup table is completely specified and the simulation resumes its run-time course.    

During the simulation, it might happen that the average Hd between two consecutive input vectors 

does not match with any of the indexes addressing the lookup table. In this case, the energy 

estimation will be a weighted sum of the energy values associated to the two closest indexes. This 

means that an average Hd equal to 0.45 will cause the indexes 0.3 and 0.5 to be selected, and the 

output estimation will be an interpolation between the estimations connected to these indexes. 

 

 

7) table_2: this power model is associated to the integer index 22, and provides cycle-accurate 

estimations (2.2). The model is based on a two-dimension lookup table; the stored energy 

estimations are function of the average Hamming distance (average Hd) and the number of stable 

zero bits (stable zeros) between consecutive input  vectors. At the end of the simulation, the overall 

estimation is given by the sum of all the cycle estimations extracted from the table. This power 

model is based on the approach described in [6], and represents a more accurate version of table_1. 

During each simulation cycle, an energy estimation is computed by extracting the table value 

addressed by the average Hd and stable zeros between the current and the previous input vectors. 

Stable zeros are handled as normalized values with respect to the number of input bits, and 

therefore are represented by float values in the range [0 – 1]. The boundary value 1 corresponds to 

all the input bits retaining a zero value between two consecutive input vectors. The application of 

this model requires to augment all the input ports of a module, or an appropriate subset of them. 

This will allow to compute the average Hd and stable zeros of the input vectors during a simulation. 

The user must provide all the information necessary to build the lookup table, i.e. the  stored energy 

estimations and the addressing values related to average Hd and stable zeros. These information are 

provided through the specification procedure at the beginning of a PKtool simulation. We can 

consider the essential details of this task. 

First of all, the user is asked to specify the number of values constituting the grid for average Hd: 

 

number of Hd values (positive integer) = 
 

In this example, we can assume a grid with 4 values.  

Afterwards, the average Hd values are required: 

 

Hd values (4 float values) =                                                                                                   
 

the user must provide a sequence of four float values written in increasing order. A possible 

sequence could be: 0.2  0.4  0.6  0.8 . Then, the same data are required for stable zeros: 
 

number of stable zeros (positive integer) =  
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We can assume a stable zero grid with 5 values.  

 

normalized stable zero values (5 float values) = 
 

the user must specify a sequence of normalized values in the range [0 – 1], reported in increasing 

order. A possible sequence could be: 0.1  0.3  0.5  0.7  0.9 . 

At this point, the energy estimations stored in the lookup table are required, with reference to the 

addressing values of Hd and stable zeros previously specified. The modality used for this step 

consists in the scanning of the stable zero grid for fixed values of Hd:  

 

Hd: 0.2     stable zeros: 0.1  0.3  0.5  0.7  0.9   
 
energy values (nJ) = 

 

the user must report a sequence of five float values, representing the energy estimations addressed 

by the (Hd, stable zeros) couples:  (0.2 , 0.1); (0.2 , 0.3); (0.2 , 0.5); (0.2 , 0.7); (0.2 , 0.9). This task 

is repeated for all the other values of Hd, so to cover all the possible (Hd, stable zeros) couples:   

 

Hd: 0.4     stable zeros: 0.1   0.3   0.5  0.7  0.9   
 
energy values (nJ) = 
 

… 
… 
 

After that, the lookup table is completely specified and the PKtool simulation can resume its run-

time course. 

The procedure now described could present some inconsistencies, due to (Hd, stable zeros) couples 

not associable to an energy estimation. In fact, Hd and stable zeros are not independent quantities: 

high values of Hd means that most bits toggle between two input vectors, so excluding high values 

of stable zeros. For example, a  (Hd = 0.8, stable zeros = 0.9) couple would represent an impossible 

case, which cannot happen during a simulation. However, the specification procedure is not able to 

recognize the invalid (Hd, stable zeros) couples. More specifically, coming back to the example, 

when we have this request sentence: 

 

Hd: 0.8     stable zeros: 0.1   0.3   0.5  0.7  0.9   
 
energy values (nJ) = 
 

It is anyway necessary to specify a sequence of five float values in order the simulation to continue 

properly, even if no energy estimation is available for the (Hd, stable zeros) couples with high 

stable zeros. In this case, the user must specify meaningless energy values for the invalid (Hd, 

stable zeros) couples, given by negative float numbers. This represents a compulsory rule to mark 

all the invalid combinations and to allow a correct management of the lookup table. Consequently, a 

possible sequence for the previous energy values could be 5.3  6.2  -1 -1 -1 .  

During the simulation, it might happen that the average Hd and/or stable zeros between two 

consecutive input vectors do not match any of the specified index couples. In this case, the output 
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estimations will be given by a weighted sum of the table values associated to the two closest index 

couples.  

 

 

8) table_3 : this power model is associated to the integer index 23, and is derived from the approach 

described in [7-8]. The model is based on a three-dimension lookup table; the stored energy estima-

tions are function of the average input probability (Pin), the average input transition density (Din) 

and the average output transition density (Dout). These signal statistics are formally defined in [2] 

and [7]. 

The application of this model requires to augment all the input and output ports of the monitored 

module, or an appropriate subset of them. At the end of a simulation, the previous statistics are 

extracted from the augmented input and output ports. Then, the overall energy estimation is 

determined by the corresponding table value.  

The user must provide all the information to build the lookup table, i.e. the stored energy 

estimations and the addressing values of Pin, Din and Dout. These information are provided through 

the specification procedure at the beginning of a PKtool simulation. We can consider the essential 

details of this task.  

At the beginning, the user is asked to specify the clock frequency of the monitored module; this 

value is necessary for computing Din and Dout : 

 

clock frequency (Mhz ) = 
 

Afterwards, the user is required to specify the value grids for Pin and Din. Such quantities are float 

numbers always included in the interval [0,1], and are subject to the constraint explained in [7]:                

Din/2 ≤  1 – 2| Pin – 0.5 | . As a consequence, some (Pin, Din) couples are to be excluded in the 

construction of the lookup table. This control task is automatically handled by the specification 

procedure, which requires the energy estimations only for valid  (Pin, Din) couples. 

First of all, the user must specify the number of values constituting the grid for Pin: 

 

number of Pin  values (positive integer) = 
 

In this example, we could assume a grid with 5 values. 

Afterwards, the Pin values are required : 

 

 

Pin  values (5 float values) = 
 

The user must report a sequence of five float values in increasing order. A possible sequence could 

be: 0.2  0.4  0.5  0.6  0.8 . 

The same data are required for Din: 

 

number of Din  values (positive integer) = 
 

We could assume a Din  grid with 4 values.  

 

Din  values (4 float values) = 
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The values must be written in increasing order. We could assume the following Din sequence: 0.1  

0.3  0.5  0.7  . 

At this point, the Dout grid is to be specified. As observed in [8], the construction of the lookup table 

is affected by the lack of direct control on Dout. In fact, unlike Pin and Din, Dout depend on the module 

functionality, which is out of the user’s control. As a consequence, Dout values cannot be handled as 

independent parameters and cannot be fixed a priori. Moreover, the Dout distribution may not be the 

same for different (Pin, Din) couples.  

For addressing this issue, the three-dimension lookup table is organized as a matrix of ordered lists 

[8]. A matrix element is uniquely identified by a (Pin, Din) couple, and is constituted by a list of 

(Dout, energy) couples ordered for increasing Dout. Within the specification procedure, the user is 

asked to specify the (Dout, energy) list for each valid (Pin, Din) couple. Accordingly, the specification 

procedure continues in this way: 

 

Pin : 0.2      Din : 0.1   
 

Number of Dout values (positive integer) = 
 

The user must specify the number of elements constituting the list associated to the couple (Pin = 

0.2, Din = 0.1). We could assume a list of 4 elements. 

After that, it is required to specify the Dout values: 

 

Dout  values (4 float values) = 
 

The user must report a sequence of four float values in increasing order. We could assume a Dout 

sequence given by 0.1  0.3  0.5  0.7  . 

Finally, it is required to provide the corresponding energy estimations: 

 

corresponding energy values (nJ) = 
  

The user must report a sequence of four float values, corresponding to the table elements addressed 

by the (Pin, Din, Dout) keys: (0.2, 0.1,  0.1),  (0.2,  0.1,  0.3), (0.2,  0.1,  0.5),  (0.2,  0.1,  0.7).  This 

completes the specification of the (Dout, energy) list associated to the couple (Pin = 0.2, Din = 0.2).  

In the following, such procedure will be repeated for all the other (Pin, Din ) couples. In the example, 

these couples are given by: (0.2,  0.3),  (0.4,  0.1),  (0.4  0.3),  (0.4,  0.5),  (0.4,  0.7),  (0.5,  0.1),   

(0.5,  0.3),   (0.5,  0.5),  (0.5,  0.7),  (0.6,  0.1),  (0.6,  0.3),  (0.6,  0.5),   (0.6,  0.7),   (0.8,  0.1),  (0.8,  

0.3) . The (Pin, Din ) couples (0.2,  0.5),  (0.2,  0.7),  (0.8,  0.5),  (0.8,  0.7) are not considered 

because they do not satisfy the constraint Din/2 <  1 – 2| Pin – 0.5 | . 

At this point, the lookup table is completely specified and the simulation resumes its run-time 

course. At the end of the simulation, it could happen that the computed Pin, Din, Dout do not match 

with the indexes specified to address the lookup table. In this case, the power estimation will be 

given by a weighted sum of the table values associated to the two closest indexes.  

 

 

Operator-based power models provide estimations taking into account the operations occurred 

during a simulation. At the moment, the default energy library comprises one operator-based power 

model associated to the integer identifier 41. This kind of models can be enabled or disabled 

through the macro PK_ENABLE_OPMODELS, defined in the header file pk_settings.h inside the 

directory src/PKtool/kernel. For enabling/disabling these models, it is necessary to uncom-
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ment/comment this macro and rebuild the PKtool library. By default, operator-based models are 

enabled.  

The application of an operator-based model consists of two main phases: run-time sampling of the 

operations, evaluation of the model. Augmented signals play a primary role in the first phase, 

because operation sampling is made feasible by means of their capabilities. More precisely, only the 

operations involving augmented signals can be sampled. For this reason, when configuring a 

module for PKtool analysis, the user should augment all those signals involved in the operations to 

be monitored. No sensitivity specification is to be set for enabling operation sampling. In compli-

ance with the limitations specified in 3.2, it is possible to augment input ports and internal nodes for 

carrying out operation sampling. 

The current PKtool implementation allows to sample only the four main arithmetic operations, i.e.  

addition ( + ), subtraction ( - ), multiplication ( * ) and division ( / ) . In the future PKtool versions 

this operator set could be extended.  

In general, it is possible to consider several plausible ways to express operation instructions within a 

SystemC/C++ description. The operation sampling capability has been developed without including 

all the possible cases, but trying to cover only the most usual forms. To be more explicit, let us 

consider the following signals: 

 

sc_in<int> in1                   // traditional input port 

sc_in_aug<int> in2, in3          // augmented input ports 

sc_signed; node1                 // traditional internal node 

sc_signed_aug; node2, node3      // augmented internal node  

tp v;                            // variable/constant of type tp     

 

Assuming addition as reference operation, the following instructions can be sampled during a 

PKtool simulation: 

 

in2 + in3; in2.read() + in3.read(); in2 + node1; 

in2.read() + node1; in2.read() + node2; in2 + v; in2.read() + v;  

in2 + 3;  in2.read() + 3; in2 + in3 + node2; 

node1 + node2; node2 + node3; node2 + v; node2 + 3; node2++; 

++node2; node2 += v; node2 += 3; 

 

The previous instructions are valid also exchanging, where possible, the operand order. Examples of 

expressions for which operation sampling is not enabled are the following: 

 

in1 + in2; in1 + in2.read(); in3 + in2.read(); 

 

In the current PKtool implementation, operation sampling has been developed for the following 

augmented signal types: 

 

a) int_aug, short_aug, long_aug, unsigned_aug, float_aug, double_aug, sc_int_aug<n>,  

sc_uint_aug<n>, sc_signed_aug, sc_unsigned_aug, sc_bigint_aug<n>, sc_biguint_aug<n>. 
 

b) sc_in_aug<T>, where T can be: int, short, long, unsigned, float, double, sc_int<n>, 

sc_uint<n>, sc_signed, sc_unsigned, sc_bigint<n>, sc_biguint<n>.  
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c) sc_in_resolved_aug, sc_in_rv_aug<n>. 

 

At the present time, operation sampling is not available for SystemC fixed point types (sc_fix, 

sc_ufix, sc_fixed …) .  

 

 

9) operator_1: this power model is associated to the integer index 41, and provides energy 

estimations on the basis of the operations executed during a simulation. Each operator is associated 

to a constant energy cost, communicated by the user through the specification procedure at the 

beginning of a PKtool simulation. The overall energy estimation is given by the sum of the occurred 

operations multiplied by the specific energy costs. As before explained, the sampled operations are 

those involving the augmented signals instanced in the module. 

In analytical terms, this model provides energy estimations according to the formula: 

 

Energy =  (add_nb * add_energy)  +  (sub_nb * sub_energy)  +  (mult_nb * mult_energy) +   

                + (div_nb * div_energy) 

 

Where op_nb is the number of occurred op operations, whereas op_energy is the energy cost 

associated to the op operation. 

We can consider the essential details of the procedure for specifying the operator energy costs. 

After selecting the index 41 in the power model request, this text is displayed: 

 

power model: operator_1     numeric index: 41 
available operators: +  -  *  / 
 
number of enabled operators = 
 

The second sentence informs about the available operators through their symbols. The request 

sentence asks the user to indicate how many operators are to be sampled among the available ones. 

In this case, such value must be an integer in the range [1 – 4]. If we want to sample additions, 

multiplications and divisions, we must report the value 3. 

At this point, the procedure requires to select the operators to be sampled: 

 

enabled operators = 
 

The user must specify the operators by means of their symbols, separated at least by one blank. In 

our example, we should report this symbol sequence: +  *  /. 

A constant energy cost is required for each operator: 

 

operator + 
energy cost (nJ units) = 
 
operator * 
energy cost (nJ units) = 
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operator / 
energy cost (nJ units) = 
 

After that, the specification procedure is completed and the simulation resumes its run-time course. 

At the end of the simulation, in addition to the overall energy estimation, in the result file (9) will be 

also reported the number of  occurrences and the overall energy contribution for each operator. 

 

 

 

11.3 Power models in pk_default_comm_lib  

At the present time, this library contains five power models with integer identifiers in the range    

[0– 4].  

 

1) fixed_comm: this power model is associated to the integer index 0, and estimates total 

commutations (Commutations) according to the formula:  

 

Commutations = C 
 

The model returns a fixed commutation value as estimation. The required data is the commutation 

value (C), which is expressed in adimensional units and must be provided by the user.  

 

 

2) fixed_rate: this power model is associated to the integer index 1, and estimates total 

commutations according to the formula: 

 

Commutations = ST 
 

This model is referred to a constant commutation rate, and the estimation is given by the product 

between the commutation rate (S) and the simulation time (T). S is expressed in Hertz and must be 

provided by the user; the simulation time is automatically computed by PKtool. 

  

 

3) model_2: this power model is associated to the integer index 2, and estimates total commutations 

according to the formula: 

 

Commutations = cComm 
 

The estimation is given by the product between a proportionality coefficient (c) and the sum of the 

commutations of all the instanced augmented signals (Comm). The proportionality coefficient is 

expressed in units and must be provided by the user; the Comm term is computed by PKtool.  

  

 

4) model_3: this power model is associated to the integer index 3, and estimates total commutations 

according to the formula: 

 

Commutations = NgComm 
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Ng is the number of gates of the monitored module; Comm represents the average commutations per 

gate. This latter quantity is estimated by averaging the total commutations of all the instanced 

augmented signals. The number of gates is expressed in units and must be provided by the user; the 

Comm term is computed by PKtool.   

 

5) model_4 : this power model is associated to the integer index 4, and estimates total commutations 

according to the formula: 

 

Commutations =     NgHavgfckT 
 

The theoretical aspects and  the formal definition of this model are reported in [9]. Ng is the number 

of gates of the monitored module; Havg is the average bit entropy; fck is the clock frequency; T is 

the simulation time. The Havg term is derived from an approximation of the average gate 

commutations per clock cycle, under the assumption of independence between consecutive values. 

Havg  is determined by PKtool and its computation requires to augment all the input and output ports 

of the module, or an appropriate subsets of them. Ng  and fck must be provided by the user.  
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