

Dipartimento DII

Università Politecnica delle Marche (Italy)

PKtool 2.3.0

User Manual

 2

1 INTRODUCTION

This document represents a user manual that covers the technical and application details of the

PKtool environment. Among the topics addressed, there are explained the steps to configure a

SystemC description for PKtool analysis, with the support of concrete examples.

This manual is referred to the PKtool version 2.3.0, and provides a comprehensive treatment of the

topics introduced in the PKtool overview document. All the information concerning installation can

be found in the ‘INSTALL’ file placed in the top directory of a PKtool release.

The contents are organized as follows:

Section 2: Power models

Section 3: Augmented signals

Section 4: Steps for configuring a module for PKtool simulations

Section 5: Inclusion of the PKtool header file

Section 6: Definition of a power model and its components

Section 7: Power model and static data specification

Section 8: Characterization based on power states

Section 9: Analysis results

Section 10: Simulation time specification

Section 11: Default model libraries

The first two sections report an in-depth description of some components used in PKtool analysis.

Sections 3-10 cover the details related to system configuration and simulation phases. Finally,

Section 11 illustrates the default power models made available by PKtool.

In the following, we will simply use the term module to indicate an sc_module, i.e. the component

provided by SystemC to define modular entities. Moreover, the term ‘power estimations’ will be

often used to indicate estimations in conventional way, without reference to their physical nature

(energy, power, commutations).

 3

2 POWER MODELS

2.1 Introduction

The power estimations resulting from PKtool analysis are based on the evaluation of user-selected

power models. A power model is commonly defined through predetermined computations (model

formulation) that return a power estimation on the basis of specific data (model data). Model

formulation can be expressed in several ways, such as analytical formulas, algorithmic procedures,

relational tables [1]. Model formulation and model data represent the central elements of a power

model in regard to its definition and application. In the following, these elements will be the main

references to characterize a power model.

Within PKtool environment, a power model is defined through a C++ description incorporated

inside the tool implementation. Such description specifies all the related computations in the form

of standard functions requiring model data as input parameters.

As concerns model data, as already discussed in the overview document, we can distinguish two

categories:

1) static data: information available before the beginning of a simulation and not dependent on the

 run-time evolution of the system.

2) dynamic data: information available only during simulation, on the basis of the run-time system

. evolution.

Typical examples of static data may be represented by technology and operative parameters; typical

examples of dynamic data may be given by signal information, e.g. switching activity.

During a PKtool simulation, model data have to be specified and linked to the applied power

models, making so relevant the distinction between static and dynamic data. For this purpose,

PKtool provides different solutions for handling model data. In particular, dynamic data are

associated to signal information and are automatically handled by means of augmented signal

capabilities. As concerns static data, their specification is carried out at the beginning of the

simulation through the procedure illustrated in Section 7.

2.2 Power model categories

In PKtool environment, power models can be classified into two categories according to their

output estimation type. More precisely, PKtool is compatible with power models that provide

estimations in terms of energy or total commutations. From now on, we will refer to these two kinds

of power models as energy models and commutation models respectively.

PKtool can be applied also with power models returning estimations in terms of average power or

commutation rate. In fact, such power models can be easily turned into equivalent energy or

commutation models by introducing the simulation time in their formulations.

When a module is configured for PKtool analysis, the user must specify if the applied power model

is an energy or a commutation model. As will be shown in 6.4, this specification is realized through

a macro instruction in the power_module class.

Power models can be further classified with respect to the modalities used for their evaluation; more

precisely, we can distinguish between cumulative models and cycle-accurate models [1]. The first

category represents power models evaluated only at the end of a simulation period, providing an

overall power estimation. The required model data usually consist in average values or time-

cumulated data. Conversely, cycle-accurate power models are evaluated at every cycle of a

simulation period, providing distinct estimations referred to the single cycle times. In contrast with

 4

cumulative power models, the required model data are usually cycle-based quantities, e.g. the

Hamming distance between consecutive input patterns. From a cycle-accurate power model it is

always possible to get an overall estimation, by summing up the partial estimations computed in

each cycle.

2.3 Power model libraries and PKtool default libraries

PKtool is not related to a particular power model but makes available a variety of power models

that a user can select without limitations. All the available power models are incorporated into

model libraries integrated into the software implementation of the tool. Inside a model library, it is

possible to include only power models based on the same estimation type, that is energy models or

commutation models. This implies two possible kinds of model library, referable to as energy

library and commutation library.

Within a model library, the power models are referenced through a double identifier composed by a

non-negative integer index (model index) and a character string (model name). Such identifiers are

unique for each power model of the library, and two power models with the same index or name

cannot be present.

The PKtool framework makes it possible to define several model libraries and let them coexist

together. However, during a simulation session, only one energy library and one commutation

library can be enabled. At the present time, PKtool makes available an energy library and a

commutation library called pk_default_energy_lib and pk_default_comm_lib respectively. During a

PKtool simulation such libraries are enabled by default, and the user can have a direct access to the

related power models. These libraries and their power models will be described in Section 11.

A user is allowed to define customized power models and make them applicable for PKtool

analysis. Such power models can be incorporated into the PKtool default libraries, in addition to the

power models already available. The definition of new power models can be realized by following

some specific rules. However, the related details are not reported in this user manual and could be

dealt with in a future documentation.

 5

3 AUGMENTED SIGNALS

3.1 Introduction

PKtool provides the means for computing characteristic signal data often required by power models,

such as bit length, bit commutations, operation statistics. These components are called augmented

signals and are based on a set of augmented types defined in the PKtool framework.

An augmented signal can be regarded as a smart signal, able to extend its basic behaviour with

further capabilities to provide additional information. When a module is configured for PKtool

analysis, augmented signals can be used for selecting those signals whose characteristic data are

required for power estimations. The instance of augmented signals is realized at code level, by

modifying the original types of the signals to be monitored. More precisely, the original types have

to be replaced by corresponding augmented types provided by PKtool.

For example, let us suppose this signal is instanced in the original implementation of a module:

sc_uint<16> bus;

The signal is called bus and is associated to the SystemC type sc_uint<16>. In order to convert this

signal into an augmented counterpart, it is necessary to modify the instance instruction in this way:

sc_uint_aug<16> bus;

where the original type has been replaced with the matching augmented type, sc_uint_aug<16>. At

this point the bus signal has become an augmented signal, so gaining all the specific capabilities.

3.2 Signals that can be augmented

In general, a module can be constituted by two kinds of signals: I/O ports and internal nodes.

Currently, it is possible to augment I/O ports without limitations, compatibly with the available

augmented types provided by PKtool (3.4). As concerns internal nodes, only the instances defined

as class members can be augmented with full functionalities. Internal nodes given by local entities

(typically, variables defined inside functions) can be converted into the augmented format with

some limitations. More precisely, such signals can be augmented only if defined in unspawned

processes (sc_thread, sc_method, and sc_chtread) [3] or functions called by an unspawned process.

Moreover, local internal nodes are not associated to identification fields (3.5) and the data that can

be extracted from them are limited to total commutations and operation occurrences.

In order to clarify these distinctions, let us consider the following module class:

#include “systemc.h”

SC_MODULE(example_mod1)

{

 // I/O ports

 sc_in<double> input;

 sc_out<double> output;

 sc_in_clk clk;

 6

 // internal nodes defined as class members

 double bus_1;

 sc_int<32> bus_2;

 bool ctr_1;

 // member function defining a spawned process

 void data_gen()

 {

 sc_int<32> bus_3; // local internal node

 ...

 ...

 };

 // member function defining an unspawned process

 void proc1()

 {

 sc_int<32> bus_4; // local internal node

 ...

 ...

 };

 void proc2()

 {

 sc_spawn(sc_bind(&example_mod1::data_gen, this));

 ...

 ...

 };

 SC_CTOR(example_mod1)

 {

 SC_METHOD(proc1)

 sensitive << clk.pos();

 SC_METHOD (proc2)

 sensitive << clk.pos();

 }

}

All the I/O ports and the internal nodes bus_1, bus _2, bus _4, and ctr_1 can be converted into

augmented signals (bus_4 with limited capabilities), whereas such conversion cannot be made for

the internal node bus_3.

 7

3.3 Data provided by an augmented signal

At the moment, an augmented signal can provide the following data:

1) bit length: the bit length with respect to the binary representation.

2) bit commutations: the commutations occurred at single bit level.

3) total commutations: the sum of all the commutations occurred, i.e. the sum of all the commuta-

 tions at bit level.

4) bit probabilities: the fractions of simulation time in which the bit values are a logic high [2].

5) operation occurrences: the number of times in which a specific operation has been carried out

 (at the moment available only for the arithmetic operators +, -, *, /)

The last four data are computed and made available in the course of a simulation, on the basis of the

run-time evolution; bit length is available from the beginning of a simulation on the basis of the

original signal type. Operation occurrences are computed only in application with operator-based

power models (10.2).

In order to show the values assumed by these data, let us consider again the augmented signal bus

introduced in 3.1. As concerns bit length, the corresponding value is 16 in accordance with the

sc_uint<16> type. As concerns the other data, their values can be determined only in reference to

the signal evolution during a simulation. For this purpose, let us consider the following assignments

during a simulation period of [0 ns – 40 ns]:

 TIME SIGNAL VALUE

 0 ns 0 (initial value)

 10 ns 2

 20 ns 5

 30 ns 16

 40 ns 4

The above scheme reports the values assumed by the signal under the assumption of a clock period

of 10 ns. With regard to bit commutations, total commutations and bit probabilities, the corre-

sponding values are reported in the following table:

TIME (ns) 0 10 20 30 40

bit

representation

0000000000000000 0000000000000010 0000000000000101 0000000000010000 0000000000000100

bit

commutations

0000000000000000 0000000000000010 0000000000000121 0000000000010222 0000000000020322

total

commutations

0 1 4 7 9

bit

probabilities

0000000000000000 0000000000000000 00000000000000
0.5 0

0000000000000
0.33 0.33 0.33

00000000000 0.25
0 0.25 0.25 0.25

The first row reports the binary representations of the signal; the successive rows show the values

referred to bit commutations, total commutations and bit probabilities. Bit commutations and bit

probabilities are represented by integer/double vectors with size equal to the bit length. Total

 8

commutations are instead given by an integer value that coincides with the sum of bit

commutations. From these data, by means of simple manipulations, it is possible to derive other

signal statistics such as average bit commutations and commutation density [2].

3.4 Available augmented types

PKtool provides the augmented counterparts for many of the types used for modelling signals in

SystemC/C++. The following list reports the augmented types currently available:

 ORIGINAL TYPES AUGMENTED TYPES

 I/O PORTS

 sc_in<T> sc_in_aug<T>

 sc_out<T> sc_out_aug<T>

 sc_inout<T> sc_inout_aug<T>

 sc_in_resolved sc_in_resolved_aug

 sc_out_resolved sc_out_resolved_aug

 sc_inout_resolved sc_inout_resolved_aug

 sc_in_rv<n> sc_in_rv_aug<n>

 sc_out_rv<n> sc_out_rv_aug<n>

 sc_inout_rv<n> sc_inout_rv_aug<n>

 INTERNAL NODES

 sc_bit sc_bit_aug

 sc_logic sc_logic_aug

 sc_bv<n> sc_bv_aug<n>

 sc_lv<n> sc_lv_aug<n>

 sc_int<n> sc_int_aug<n>

 sc_uint<n> sc_uint_aug<n>

 sc_signed sc_signed_aug

 sc_unsigned sc_unsigned_aug

 sc_bigint<n> sc_bigint_aug<n>

 sc_biguint<n> sc_biguint_aug<n>

 sc_fix sc_fix_aug

 9

 sc_fix_fast sc_fix_fast_aug

 sc_fixed sc_fixed_aug

 sc_fixed_fast sc_fixed_fast_aug

 sc_ufix sc_ufix_aug

 sc_ufix_fast sc_ufix_fast_aug

 sc_ufixed sc_ufixed_aug

 sc_ufixed_fast sc_ufixed_fast_aug

 bool bool_aug

 char char_aug

 int int_aug

 float float_aug

 double double_aug

 signed signed_aug

 unsigned unsigned_aug

 long long_aug

 short short_aug

The signal types have been logically subdivided considering their use as I/O ports or internal nodes.

Given an original signal type, the rule for having the augmented counterparts consists in adding the

term ‘_aug’ in the original type name.

As concerns internal nodes, the available augmented types cover almost all the signals that can be

modelled through C++ native types and specific SystemC types. At the moment, the augmentable

I/O ports are only those related to the interfaces sc_signal_if and the resolved versions.

3.5 Identification fields

An augmented signal is univocally associated to an identifier set. Such identifiers allow to

distinguish different augmented signals instanced in a same context. More precisely, an augmented

signal is identified by three fields: module name, signal category and numeric index. The first field

is the univocal name of the belonging module [3]. In regard to signal category, there are four

possible values:

1) input port

2) output port

3) input-output port

4) internal node

The signal category internal node concerns the internal nodes that can be augmented in compliance

with the limitations described in 3.2. The numeric index is a positive integer with the aim to

distinguish augmented signals of the same category and belonging to the same module. Such index

is assigned on the basis of the construction order, as specified by the standard C++ rules [4]. For

 10

example, if inside a module there are instanced N augmented input ports, the first-built port is

assigned to the index 1, the second-built port to the index 2, and so on.

In order to clarify the identification rules, let us consider the following module class:

SC_MODULE(example_mod2)

{

 // ports

 sc_in<bool> clk;

 sc_in_aug<sc_int<32> > in1;

 sc_in<int> in2,in3;

 sc_in_aug<sc_uint<64> > addr;

 sc_out<bool> error;

 sc_out_aug<sc_uint<64> > out1, out2;

 sc_inout_aug<int> log1;

 sc_inout<int> log2;

 // internal nodes

 int_aug<64> st1;

 bool st2;

 unsigned st3;

 sc_uint_aug<16> st4, st5;

 // rest of the code

 ...

 ...

}

The class body comprises both ordinary and augmented signals. These latter are given by the input

ports in1 and addr, the output ports out1 and out2, the input-output port log1, and the internal nodes

st1, st4, and st5.

Now, let us consider the values assumed by the identification fields for this instance of

example_mod2 :

example_mod2 module(“master”);

The name given to the module is master, which represents the module name identifier for all the

augmented signals. The following table summarizes the identification fields for each augmented

signal:

 11

signal module name signal type numeric index

in1 master input port 1

addr master input port 2

out1 master output port 1

out2 master output port 2

log1 master inout port 1

st1 master internal node 1

st4 master internal node 2

st5 master internal node 3

 12

4 STEPS FOR CONFIGURING A MODULE FOR PKTOOL ANALYSIS

4.1 Characterization of the steps

PKtool analysis are executed at level of the single modules constituting a monitored system. For

each selected module, it is necessary to realize a configuration procedure based on some systematic

steps. This section reports an overview of these steps, mentioned below in their logical order:

a) Inclusion of the header files for making visible PKtool class library.

b) Specification of the output estimation type (energy or commutations).

c) Specification of the power model to be applied.

d) Instance of the augmented signals whose data are required for power estimations.

e) Assignment of the static data required by the applied power model.

f) Definition of a power state characterization, in the case of a configuration based on this

 approach.

For simplicity reasons, we will often refer to these steps through the alphabetical letter associated in

the above list.

The steps a), b), c) are always to be carried out. The necessity of the steps d) and e) depends on the

nature of the data required by the applied power models. The step f) is optional, and is to be

considered only for analysis based on a power state configuration. The steps a), b), d) and f) are

realized via code-level instructions, whereas the steps c) and e) are based on a specification

procedure at the beginning of a PKtool simulation.

4.2 Application example for describing the configuration steps

The configuration steps will be illustrated by means of examples on a simple module with the

following top level structure:

Such module is called square_input and its I/O layout is composed by three input ports (input ,

standby, and clock) and two output ports (output and overflow). The main process computes the

square of the unsigned values sent to the input port, reporting the results onto the output port. This

process is synchronous with respect to the positive edges of the clock. If the input value is greater

than 255 an overflow condition occurs, which is communicated through the overflow port. If the

standby port is set to true, the system enters into a standby state and stops its calculation activities

for a period of three clock cycles. After this time, the ordinary behaviour is resumed if the standby

port is set to false.

What follows is a possible SystemC representation of the square_input class:

SQUARE_INPUT

 input

 standby

 clock

output

overflow

 13

#include "systemc.h"

SC_MODULE(square_input)

{

 sc_in<bool> standby;

 sc_in<sc_uint<8> > input;

 sc_out<bool> overflow;

 sc_out<sc_uint<16> > output;

 sc_in_clk clk;

 const unsigned over_value;

 void process()

 {

 while(true)

 {

 if(standby)

 {

 output = 0; overflow = false;

 wait();

 wait();

 wait();

 }

 while(standby) wait();

 if(input.read() >= over_value){ output = 0; overflow = true;}

 else { output = (input.read()*input.read()); overflow = false;};

 wait();

 };

 };

 SC_HAS_PROCESS(square_input);

 square_input (sc_module_name name): sc_module(name),over_value(255)

 {

 SC_THREAD(process)

 sensitive_pos<<clk.pos();

 dont_initialize();

 output.initialize(0);

 };

};

 14

5 INCLUSION OF THE PKTOOL HEADER FILE

The configuration for PKtool analysis firstly requires to make visible the PKtool class library. This

is achieved by including the PKtool header file in the class implementation of the monitored

modules. Such file is called PKtool.h and is incorporated into the PKtool software framework.

The inclusion of the PKtool header should be considered in two typical cases. The first situation

concerns the instance of augmented signals inside a module class. As described in section 3, this

operation entails the use of augmented signal types provided by PKtool, which can be made visible

only via the PKtool header.

As a concrete example, let us consider the class defining the module square_input, assuming that

the related code is reported in a header file called square_input.h :

// square_input.h

#include "systemc.h"

SC_MODULE(square_input)

{

 sc_in<bool> standby;

 sc_in<sc_uint<8> > input;

 sc_out<bool> overflow;

 sc_out<sc_uint<16> > output;

 sc_in_clk clk;

 // rest of the code

 ...

 ...

}

If we want to augment the ports input and output, we must modify the above code in this way:

// square_input.h

#include "systemc.h"

#include "PKtool.h" // PKtool header file

SC_MODULE(square_input)

{

 sc_in<bool> standby;

 sc_in_aug<sc_uint<8> > input;

 sc_out<bool> overflow;

 sc_out_aug<sc_uint<16> > output;

 sc_in_clk clk;

 // rest of the code

 ...

}

 15

With respect to the original code, we have included the PKtool header before the class body and

after the SystemC header. This makes possible the conversion of the ports input and output into

their augmented counterparts. SystemC and PKtool headers must always be included according to

the order shown in the example.

In general, the inclusion of the PKtool header could not be strictly mandatory in this case. Actually,

such inclusion is necessary only if the applied power model requires specific signal data in its

formulation, thus making necessary the instance of augmented counterparts for some signals.

The PKtool header must be included also for defining a power_module class (topic discussed more

deeply in section 6). This situation can be illustrated through another example, in which we want to

define a power_module class for square_input. As ordinary practice, the power_module code can be

reported in a separate file that we could call powmod_squin.h. As concerns the initial #include

directives, this file should begin in this way:

// powmod_squin.h

#include " square_input.h"

#include "PKtool.h" // PKtool header file

// power_module class

...

...

The first header makes visible the module class, whereas the second one the PKtool components for

defining the power_module class. Unlike the instance of augmented signals, in this case the

inclusion of the PKtool header is always mandatory to configure square_input for PKtool analysis.

Nonetheless, if this header has already been specified in square_input.h (for example, to instance

augmented signals), its explicit inclusion can be omitted in powmod_squin.h.

 16

6 DEFINITION OF A POWER_MODULE AND ITS COMPONENTS

6.1 Introduction

In order to configure a module for PKtool analysis, it is necessary to define a specific

power_module. A power_module is a PKtool entity that allows to make a module monitorable by

PKtool. Moreover, a power_module is also the place where to realize the configuration steps b) and

f). Like an ordinary module, two sequential phases are to be considered for instancing a

power_module:

1) definition of the power_module class.

2) instance of power_module objects.

The specific details will be described through a concrete application on square_input module.

6.2 Power_module class

First of all, it is necessary to define the power_module class. The simplest form for the class title is

the following:

#include "square_input.h"

#include "PKtool.h"

POWER_MODULE_CLASS(square_input)

{

 ...

 ...

}

where we have used the parameterized macro POWER_MODULE_CLASS, with the name of the

module class as parameter. This title definition is the most commonly used, and should be applied

when a power_module class does not have to inherit from further classes.

Alternatively, the class title can be defined through a more classical C++ form:

struct POWER_MODULE(square_input): square_input, power_module_b,...

{

 ...

 ...

}

In this case, the power_module class is implemented by a struct whose name is given by the macro

POWER_MODULE, with the name of the module class as parameter. This struct must inherit

publicly from the module class and the power_module_b class; this latter is defined in the PKtool

library. As implicitly shown in the code, the power_module class could inherit from further classes.

6.3 Constructor and destructor

The power_module constructor may be specified through two possible options. The simplest way is

 17

POWER_MODULE_CTOR(square_input)
{

 ...

 ...

}

where we have used the parameterized macro POWER_MODULE_CTOR, with the name of the

module class as parameter.

The second way is based on a more complex instruction:

PK_HAS_PROCESS(square_input);

POWER_MODULE(square_input) (::sc_core::sc_module_name nm, ...):

 square_input(nm, ...), PK_PMB_CTOR, ...

{

 ...

 ...

}

First of all, we must specify the parameterized macro PK_HAS_PROCESS ; then, we must report

the constructor title in an explicit form. The name of the constructor must be given by the

parameterized macro POWER_MODULE. The constructor parameters can include an arbitrary

number of elements. However, as shown in the example, it is mandatory to specify an

sc_module_name parameter that will be passed to the module constructor. In the initialization list, it

is mandatory to report the constructor of the module class and the macro PK_PMB_CTOR; this

latter stands for the constructor of power_module_b. If necessary, the initialization list may include

the constructors of further entities, such as internal members or inherited classes.

The power_module constructor can be expressed through the first and simpler option if these three

conditions are true:

a) except for the mandatory sc_module_name parameter, the power_module constructor does not

 require further parameters.

b) the module constructor requires only an sc_module_name object as parameter.

c) except for the constructors referred to the module and power_module_b class, the initializa-

 tion list does not have to include the constructors of further entities.

if one of these conditions is not verified, the power_module constructor should be expressed

through the second option.

Within a power_module class the constructor covers an important role and must be always defined.

In particular, as shown in sections 6.5 and 8.2, the constructor represents the place where to report

sensitivity specifications.

As concerns power_module destructor, it must be defined in this way:

POWER_MODULE_DTOR

{

 ...

}

 18

where we have used the macro POWER_MODULE_DTOR as destructor title. This is the unique

way to express the power_module destructor; the use of a more classical form would lead to a

wrong definition and a probable compilation error. Unlike the constructor, a destructor may be

omitted inside a power_module class because its definition is not strictly necessary and depends

only on specific needs.

6.4 Output estimation type

The configuration step b) concerns the specification of the output estimation type, i.e. if the output

estimations are expressed in terms of energy or total commutations. Such specification implicitly

defines also the kind of power models that can be applied, i.e. energy models or commutation

models. This step is realized by reporting one of the following macros inside the power_module

class:

PK_USES_ENERGY_MODELS

PK_USES_COMMUTATION_MODELS

The first macro must be selected for energy estimations, whereas the second one for commutation

estimations. If we want to set energy estimations in our example, we must report this instruction

into the power_module class:

POWER_MODULE_CLASS(square_input)

{

 ...

 ...

 PK_USES_ENERGY_MODELS

 ...

 ...

};

6.5 Sensitivity specifications

The power_module constructor is the place where to define the sensitivity specifications for some

tasks that can be part of a PKtool analysis. These tasks consist in the updating of augmented input

ports and the evaluation of cycle-accurate power models.

With regard to the first case, augmented signals need to have their characteristic data updated

during a PKtool simulation; such updating is normally required when signal values change. In the

current PKtool implementation, augmented input ports are not able to carry out this operation in an

autonomous way. Actually, a user intervention is necessary to indicate when to execute the updating

procedure. More into details, the user has to define an appropriate sensitivity specification inside the

power_module constructor. From now on, we’ll refer to such specification as augmented input port

sensitivity (AIP sensitivity).

As an example, considering the power_module related to square_input, the AIP sensitivity could be

defined in this way:

 19

POWER_MODULE_CTOR(square_input)

{

 PK_INPORT_SENSITIVITY

 sensitive << clk.pos();

 ...

 ...

}

The AIP sensitivity is defined by the macro PK_INPORT_SENSITIVITY followed by explicit

sensitivity instructions. These latter specify the events on which the updating procedure is to be

carried out. The AIP sensitivity is set with the same syntax and rules for the sensitivity of an

ordinary SystemC process. In the example, the AIP sensitivity consists in the positive edges of the

clock signal. This means that the characteristic data of all the augmented input ports will be updated

on these events, during a PKtool simulation. As general rule, the AIP sensitivity should include

those events that can cause a change in the input port values. For a clocked module, the AIP

sensitivity could consist in the clock triggering events.

Now, let us consider the effects of AIP sensitivity through an example concerning the port input

instanced in square_input. Let us suppose that this port shows the following evolution during a

PKtool simulation :

The clock period is set to 10 ns. The above representation shows the values assumed during the first

40 ns. For simplicity reasons, this example will be focused only on the signal data related to total

commutations (3.3).

In compliance with the AIP sensitivity previously specified, the values used for computing the

commutations are sampled on the positive clock edges:

 TIME SIGNAL VALUE

 10 ns 0

 20 ns 3

 30 ns 13

 40 ns 10

Accordingly, the following commutations are computed:

10 9 13 2 3 0

30 ns 40 ns 20 ns 10 ns

clock

 input

 20

 TIME COMMUTATIONS TOTAL COMMUTATIONS

 10 ns 0 0

 20 ns 2 0 + 2 = 2

 30 ns 3 2 + 3 = 5

 40 ns 3 5 + 3 = 8

The temporary values between consecutive clock cycles are not considered with this AIP

sensitivity. In particular, coming back to the previous signal evolution, the values 2 and 9 are not

sampled for updating total commutations.

For applications where we want to evaluate also the contributions of temporary values, the AIP

sensitivity should be specified in different way. More precisely, the sampling events should occur

whenever the signal value changes. This behaviour can be achieved through these instructions:

POWER_MODULE_CTOR(square_input)

{

 //AIP sensitivity

 PK_INPORT_SENSITIVITY

 sensitive << input;

 ...

 ...

}

Now the AIP sensitivity should sample all the values assumed by the input port, comprising also the

temporary values:

 SIGNAL VALUE COMMUTATIONS TOTAL COMMUTATIONS

 0 0 0

 3 2 0 + 2 = 2

 2 1 1 + 2 = 3

 13 4 3 + 4 = 7

 9 1 7 + 1 = 8

 10 2 8 + 2 = 10

Defining the AIP sensitivity does not represent a mandatory specification. It could be required only

if augmented input ports are instanced in a module to be monitored.

Besides AIP sensitivity, the power_module constructor is also the place where to define sensitivity

instructions for cycle-accurate power models (2.2). For brevity, we will refer to this specification as

cycle-model sensitivity.

Cycle-model sensitivity should be defined when a cycle-accurate power model is applied. This kind

of power model should be evaluated in each simulation cycle, providing partial estimations referred

 21

to single cycle times. For enabling such evaluations, it is necessary to specify explicitly the

corresponding cycle events by means of specific sensitivity instructions. In the typical case of a

clocked module, the cycle concept is based on the clock synchronization and the cycle events

should consist in the clock triggering events. The following code shows how we can define cycle-

model sensitivity inside power_module constructor:

POWER_MODULE_CTOR(square_input)

{

 PK_CYCLEMODEL_SENSITIVITY

 sensitive << clk.pos();

}

Cycle-model sensitivity is defined by the macro PK_CYCLEMODEL_SENSITIVITY followed by

specific sensitivity instructions. These latter declare the events on which the power model is to be

evaluated; the form of such instructions is the same used for the sensitivity of SystemC processes.

In the example, being square_input a clocked module sensitive to positive clock edges, the cycle-

model sensitivity has been associated to such events.

The sensitivity specifications so far discussed have been shown by means of distinct instructions.

However, if the triggering events are the same, it is possible to apply a simpler and unified

specification, which can be referred to as module sensitivity. To illustrate the use of module

sensitivity, let us consider the following situation:

POWER_MODULE_CTOR(square_input)

{

 // AIP sensitivity

 PK_INPORT_SENSITIVITY

 sensitive << clk.pos();

 // cycle-model sensitivity

 PK_CYCLEMODEL_SENSITIVITY

 sensitive << clk.pos();

}

The power_module constructor reports the definitions of an AIP sensitivity and a cycle-model

sensitivity based on the same triggering events. In this case, the previous instructions can be

alternatively specified by module sensitivity:

POWER_MODULE_CTOR(square_input)

{

 // module sensitivity

 22

 PK_MODULE_SENSITIVITY

 sensitive << clk.pos();

}

Module sensitivity is defined by the macro PK_MODULE_SENSITIVITY followed by specific

sensitivity instructions. These latter must be the same reported in the AIP sensitivity and cycle-

model sensitivity.

It is possible the coexistence between module sensitivity and explicit sensitivity specifications

without ambiguities:

POWER_MODULE_CTOR(square_input)

{

 // AIP sensitivity

 PK_INPORT_SENSITIVITY

 sensitive << inport_event;

 // cycle-model sensitivity

 PK_CYCLEMODEL_SENSITIVITY

 sensitive << model_event;

 // module sensitivity

 PK_MODULE_SENSITIVITY

 sensitive << clk.pos();

}

In this example, the explicit sensitivities are always prevailing over the module sensitivity. This

means that the updating tasks for augmented input ports and cycle-accurate power models are

executed on the notifications of inport_event and model_event.

It is also possible a hybrid situation as illustrated below:

POWER_MODULE_CTOR(square_input)

{

 // cycle-model sensitivity

 PK_CYCLEMODEL_SENSITIVITY

 sensitive << model_event;

 // module sensitivity (specifies implicitly AIP sensitivity)

 PK_MODULE_SENSITIVITY

 sensitive << clk.pos();

}

 23

The updating task for a cycle-accurate power model is executed only when model_event is notified.

However, in absence of an explicit specification, the AIP sensitivity results automatically included

in the module sensitivity. As a consequence, if augmented input ports are instanced, their updating

tasks are carried out on the positive clock edges.

6.6 Instance of power_modules

The selection of a module for PKtool analysis requires the replacement with a matching

power_module. Similarly to augmented signals, this is simply achieved by modifying the original

module type in the instance instruction. This operation is shown through the following description:

#include "square_input.h"

int sc_main ()

{

 // module instances

 square_input squin_1 ("squin_1");

 square_input squin_2 ("squin_2");

 // rest of the code

 ...

};

In the example two square_input modules, squin_1 and squin_2, are defined in an sc_main function

[3]. All the connection instructions and other possible entities are not involved in power_module

instance and, therefore, have been omitted.

If we want to select squin_1 for PKtool analysis, we must modify its instance instruction in this

way:

#include "powmod_squin.h"

int sc_main ()

{

 // module instances

 POWER_MODULE(square_input) squin_1("squin_1");

 square_input squin_2("squin _2");

 // rest of the code

 ...

};

 24

where we have wrapped the module type in the macro POWER_MODULE. This is the only action

to be done in the sc_main function to realize a power_module conversion. The header file

"powmod_squin.h" must be included in order to make visible the power_module class.

At this point, squin_1 has become a power_module and is automatically selected for PKtool

analysis. On the other hand, this does not happen for squin_2 since its original type has not been

modified. During a PKtool simulation, such module is not involved in PKtool analysis and retains

its basic behaviour as in an ordinary SystemC simulation.

In the previous example we have seen the instance of a power_module at the most global level, i.e.

inside an sc_main function. Nonetheless, a power_module can be also instanced within a hierar-

chical architecture, in particular as submodule of another module. For example, we can consider a

complex module that realizes a polynomial expression, and includes a square_input submodule to

compute the square term:

SC_MODULE(polynomial)

{

 // internal square_input module

 square_input sq_term ;

 ...

 ...

 // constructor

 polynomial(sc_module_name): sq_term("sq_term"), ...

 {

 ...

 }

};

The submodule is called sq_term; in the code there are reported only the instructions related to its

instance and construction. If we want to convert sq_term into a power_module, it is necessary to

modify only the instance instruction:

#include "powmod_squin.h"

SC_MODULE(polynomial)

{

 // internal square_input power_module

 POWER_MODULE(square_input) sq_term ;

 ...

 ...

 // constructor

 polynomial(sc_module_name): sq_term("sq_term"),...

 {

 ...

 }

};

 25

Also in this case, the original module type must be wrapped in the macro POWER_MODULE. The

construction and connection instructions are not to be modified. The power_module related to

sq_term is indirectly instanced whenever a polynomial module is instanced. When this happens,

such power_module is automatically selected for PKtool analysis.

The power_module conversion can be carried out also for a module created dynamically. To show

this situation, let us consider a variant of the polynomial class in which sq_term is created

dynamically in the constructor body:

SC_MODULE(polynomial)

{

 // internal square_input power_module

 square_input* sq_term ;

 ...

 // constructor

 polynomial(sc_module_name)

 {

 sq_term = new square_input("sq_term");

 // connection instructions

 ...

 };

};

In this case, the power_module conversion requires to modify the instructions involving the original

type; in particular, the pointer declaration and the construction:

#include "powmod_squin.h"

SC_MODULE(polynomial)

{

 // internal square_input power_module

 POWER_MODULE(square_input)* sq_term ;

 ...

 // constructor

 polynomial(sc_module_name)

 {

 sq_term = new POWER_MODULE(square_input)("sq_term");

 // connection instructions

 ...

 };

};

 26

7 POWER MODEL AND STATIC DATA SPECIFICATION

7.1 Introduction

Unlike the settings so far described, the configuration steps c) and e) do not require a realization at

code level but are based on a procedure at the beginning of a PKtool simulation. More precisely,

such steps are based on an interaction with the command prompt window. The specific details will

be shown through a simulation example that involves the power_module squin_1, as instanced in

the sc_main function shown in 6.6 .

7.2 Interaction with the command prompt window

When a SystemC simulation is started on the system to which squin_1 belongs, automatically also a

PKtool simulation is activated. First of all, this text appears on the command prompt window:

 POWER_MODULE: squin_1

OPTIONS FOR SPECIFYING THE POWER MODEL

1: interaction with window

2: reading from configuration file

3: no monitoring

select an option (1, 2, or 3) =

The headline declares the name of the considered power_module; all the data that will be

communicated regard such power_module. Initially, the user is required to select one of three

options identified by the numbers 1, 2, and 3. The first two options have to do with the modalities to

communicate the power model data; the third option disables the power_module in the current

PKtool simulation. From now on, we will refer to this initial task as preliminary window menu.

The option 1 allows to specify the data through an interaction with the command prompt window,

whereas the option 2 through a pre-existent text file (configuration file); this latter must be defined

according to suitable layout rules. The first time that the power_module is included in a PKtool

simulation, it is always convenient to select the option 1. In this way, the configuration file will be

automatically created by PKtool with the same data specified in the window interaction. This

modality will be further explained in 7.4. Finally, the option 3 should be considered when several

power_modules are instanced but only a subset of them is to be monitored for PKtool analysis.

Coming back to our example, let us select the option interaction with window by writing 1 in the

request sentence and pressing return. As result, this text is displayed:

 27

estimation type: energy
model library selected: pk_default_energy_lib
available power models: 9
related numeric indexes: 0 1 2 3 4 21 22 23 41

power model =

The first four sentences are information about the enabled model library: estimation type, name,

number of power models, related model indexes. These information reflect the fact that the

estimation type has been set in terms of energy, as specified in the power_module class (6.4),

determining consequently the applicable power models.

The power model is selected through the final request sentence, which asks the user to insert the

related numeric index. In this simulation, we might assume a power dissipation modelled by the

power model with numeric identifier 3. This model is called model_3, and is based on the following

formula:

Energy = c Cap Vdd Comm

which is derived from the dynamic energy consumption in CMOS technology. In the formula, c is a

float proportionality coefficient, Cap an equivalent capacitance, Vdd the applied power supply. These

parameters represent static data and must be provided by the user. Comm is the sum of the

commutations of all the augmented signals, as occurred during the simulation. Comm is a dynamic

data and is automatically computed in the course of the simulation, by means of augmented signal

capabilities.

For selecting this power model, the user must specify its numeric index in the request sentence. In

this way, the configuration step c) is realized.

Thereafter, this text is displayed:

power model: model_3 numeric index: 3
coefficient (units) =

Now the user is asked to provide the static data of the power model. First of all it is required the

proportionality coefficient; as specified, this value must be reported in units. In this example, we

might assume a coefficient equal to 3.

In the following of the interaction, there are displayed the request sentences to assign the other

static data of the model:

power supply (V) =

As concerns the power supply, we might assume 3.3 V.

capacitance (nF) =

The equivalent capacitance might be set to 12 nF.
At this point, all the static data have been communicated and the configuration step e) is thus

realized. The specification procedure reaches its termination and PKtool is provided with all the

information for executing power estimations on squin_1 module. The SystemC/PKtool simulation

2

 28

resumes its course, continuing with the appearance of an ordinary SystemC simulation. At the end

of the simulation, the estimation results will be reported in a suitable text file.

The considered example has shown the simplest case in which only one power_module is instanced.

If several power_modules had been instanced, the specification procedure would have been carried

out for each of them, following a sequential path based on their construction order.

7.3 Configuration file

At the end of the interaction with the command prompt window, PKtool automatically creates a

configuration file whit all the data specifying the selected power models. This file is formatted

according to suitable rules, and is reported in the directory where the system project files are

located. During a PKtool simulation, a configuration file is created for each power_module.

In our example only one configuration file is created, in reference to the squin_1 power_module.

Such file is called pk_squin_1_cfg, in compliance with the naming rule:

 pk_pmname_cfg

where pmname is the name of the power_module.

Considering the case of pk_squin_1_cfg, the content of a configuration file is represented by this

text:

 1) Configuration file power_module: squin_1
 2)
 3) monitored power_module (Y/N)= Y
 4)
 5) enable window menu (Y/N)= Y
 6)
 7)
 8)
 9) estimation type: energy
10) model library selected: pk_default_energy_lib
11) available power models: 9
12) related indexes: 0 1 2 3 4 21 22 23 41
13)
14) power model: model_3 numeric index: 3
15) coefficient (units) = 3
16) power supply (V) = 3.3
17) capacitance (nF) = 12

In the real configuration file there are no line indexes, here inserted only for a better reference to the

text. Lines 9-12 show the information concerning the power model library. Subsequently, it is

reported the selected power model (line 14) with the specific static data (lines 15-17). Line 3

declares if the power_module is enabled for PKtool simulations, with reference to the preliminary

window menu. More precisely, its value is assigned to Y (yes) if the option 1 or the option 2 is set.

In the case the option 3 is selected, this setting is assigned to N (no). Line 5 specifies if the

preliminary window menu is to be enabled. This other setting represents an optimization that allows

to speed up the initial phase of a PKtool simulation. Normally, this setting is assigned to Y (yes), so

enabling the interaction with the preliminary window menu. If it were assigned to N (no), the

preliminary window menu would be automatically skipped and the reading from the configuration

 29

file would be the option implicitly selected. The settings of lines 3 and 5 will be further discussed in

the next section, where they will be simply referred to as line-3 and line-5 settings.

7.4 Reading from configuration file

Let us consider again the preliminary window menu for the power_module squin_1:

 POWER_MODULE: squin_1

OPTIONS FOR INSERTING CONFIGURATION AND MODEL DATA

1: interaction with window

2: reading from configuration file

3: no monitoring

select an option (1, 2, or 3) =

If the option 2 is selected, the configuration steps c) and e) are realized by reading the data directly

from the configuration file, without further interactions with the command prompt window. This

brings to an easier specification, representing the best solution when several PKtool simulations are

carried out with the same configuration data.

The option 2 can be selected only if the configuration file is already defined. As previously said, the

user can avoid to define directly this file because it is automatically created by PKtool when the

option 1 is selected. The data reported in the file are the same specified by the user through the

interaction with window.

The first time that a power_module is involved in PKtool simulations, the configuration steps c) and

e) should be always realized by selecting the option 1. In this way, the configuration file will be

created without any user intervention, making the option 2 applicable for the next simulations. Such

solution is always correct until the power_module configuration is left unchanged with respect to

the data of the steps c) and e). In case the user wants to modify such data and run PKtool

simulations under a different configuration, the approach to follow depends on which data have to

be modified. More precisely, if the user wants to change only the static data required by the power

model, this can be made directly on the configuration file. For the next PKtool simulations it will be

still possible to select the option 2, since the new static data will be correctly read from the updated

file.

As an example, let us consider the configuration file for the power_module squin_1, as reported in

the previous section. If we want to specify different static data, by changing the proportionality

coefficient from 3 to 5 and the power supply from 3.3 V to 3.8 V, we should modify the file in this

way:

 30

 1) Configuration file power_module: squin_1
 2)
 3) monitored power_module (Y/N)= Y
 4)
 5) enable window menu (Y/N)= Y
 6)
 7)
 8)
 9) estimation type: energy
10) model library selected: pk_default_energy_lib
11) available power models: 9
12) related indexes: 0 1 2 3 4 21 22 23 41
13)
14) power model: model_3 numeric index: 3
15) coefficient (units) = 5
16) power supply (V) = 3.8
17) capacitance (nF) = 12

After saving the file, the new static data will be enabled for the next PKtool simulations.

A different situation takes place when the user wants to change the power model to be applied. In

fact, this operation cannot be made through a direct modification of the configuration file. In this

case, at least in the first simulation with the new power model, the proper solution would be to

select the option 1 and communicate the new power model and its static data via the window

interaction. In this way, a new configuration file will be automatically created by PKtool with the

new data. As long as the applied power model remains the same, such file will be valid to run

PKtool simulations through the option 2 of the preliminary window menu.

The configuration file reports two specifications introduced in the previous section as line-3 and

line-5 settings. The line-3 setting allows to select the option 3 of the preliminary window menu

directly from the configuration file. This means that if this setting is assigned to N, the

power_module will not be monitored in the next PKtool simulations, and the preliminary window

menu will be automatically skipped. In order to make the power_module monitorable again, this

setting must be assigned to Y by the user.

The line-5 setting allows to skip automatically the preliminary window menu, with the implicit

selection of the option 2. This is what happens if this setting is assigned to N. In this way, at the

beginning of a PKtool simulation, the user is exempted from the interaction with the preliminary

window menu and the explicit selection of the option 2. The typical situation for exploiting the line-

5 setting is when a power_module is involved in several simulations in which the option 2 is used.

Whenever the configuration file is automatically created by PKtool, the line-5 setting is always

assigned to Y (yes).

 31

8 CHARACTERIZATION BASED ON POWER STATES

8.1 General description and application cases

The basic version of a PKtool simulation provides an overall estimation referred to the whole

simulation period. However, it is possible to configure more refined analysis, in which to set up

partial estimations referred to specific simulation phases. Furthermore, it is also possible to change

the applied power model in each of the monitored phases. In other words, different simulation

phases can be associated to different power models with respect to model formulation or model

data. In PKtool analysis this opportunity may be realized through a power state configuration.

A power state defines an operative condition that can be handled as a stand-alone context during a

PKtool simulation. In concrete terms, it is possible to achieve partial estimations referred to the time

periods in which the considered condition is valid. A power state characterization leads to subdivide

the functionality of a module into complementary conditions, each associated to a specific power

state. In this way, PKtool analysis may be extended towards the following targets:

a) evaluating the power dissipation in specific time periods.

b) reproducing power management technique based on the run-time change of model data.

c) applying different power models to evaluate different operative conditions.

Briefly discussing these applications, the case a) concerns situations where we want to examine the

power dissipated in sub-intervals of the simulation time. In this case, the applied power model could

be the same for all the power states representing the system functionality. During a simulation, this

power model can be computed several times to estimate the power dissipations referred to each time

sub-interval. The case b) is a variant of the case a), with the aim to reproduce power optimization

techniques such as dynamic voltage/frequency scaling [5]. In this situation, the power states are

associated to a power model that can be subject to variations in its model data, on the basis of the

run-time evolution. A power state characterization allows to separate simulation phases in which the

model data are fixed. The transition from a power state to another one takes place when the model

data are assigned to new values, in consequence of the power optimization strategy. When this

happens, a partial power estimation is computed by evaluating the power model using the old model

data. In this way, it is possible to cover properly the effects of power optimization techniques in the

estimation procedure. In the case c), the target is to differentiate the applied power model on the

basis of the operative conditions. This solution may be considered when different working phases

are better characterized if associated to different power models.

It is important to underline how power state characterization is a facultative step and should be

considered only if the specific analysis targets are to be achieved. In any case, implementing this

approach entails an additional overhead in modeling and simulation efforts.

8.2 Realization of a power state characterization

This section shows how to realize a power state characterization when configuring a module for

PKtool analysis. A relevant part of this step consists in definitions reported inside the

power_module class, which can be illustrated through an example on the square_input

power_module.

First of all, it is necessary to define a power state subdivision for the square_input functionality. For

this purpose, we could consider three complementary conditions: normal computation, standby

condition and overflow condition. These working situations could be associated to three distinct

 32

power states, called respectively ‘normal_st’, ‘standby_st’, and ‘overflow_st’. The declaration of

these power states is realized by the following instruction in the power_module class:

POWER_MODULE_CLASS(square_input)

{

 ...

 PK_POWER_STATES{standby_st, normal_st, overflow_st};

 ...

}

The instruction begins with the macro PK_POWER_STATES followed by an enumeration of the

power states enclosed in curly brackets. In addition to define the three power states, this declaration

sets also a relative order in which, going from left to right, standby_st is the first power_state,

normal_st the second and overflow_st the third. In compliance with this order, the power_states are

associated to increasing integer identifiers starting from 1: standby_st to 1, normal_st to 2, and

overflow_st to 3. It is via such identifiers that the power states can be referenced in some specifi-

cation tasks.

After that, it is necessary to define a state machine that updates the current power state during a

PKtool simulation. From now on, such state machine will be referred to as powerFSM. In C++

language a classical way for implementing a state machine is by means of the switch-case construct.

In PKtool applications, the powerFSM is defined through a different solution based on updating

functions. More precisely, for each power state a distinct updating function must be defined; this

latter describes the rules for determining the next power state when the associated power state is the

current one.

In our example, a possible implementation of the updating functions may be the following:

// updating function for normal_st

PK_STATE_FC(normal_st)

{

 if (standby == true) return standby_st;

 if (input.read() >= over_value) return overflow_st;

 return normal_st;

};

// updating function for standby_st

int stb_cnt;

PK_STATE_FC(standby_st)

{

 while(stb_cnt < 3)

 {

 ++stb_cnt;

 return standby_st;

 };

 if(standby == true)

 return standby_st;

 else

 {

 stb_cnt = 1;

 if(input.read() >= over_value) return overflow_st;

 33

 else return normal_st;

 };

};

// updating function for overflow_st

PK_STATE_FC(overflow_st)

{

 if(standby == true) return standby_st;

 else if(input.read() >= over_value) return overflow_st;

 else return normal_st;

};

The title of each function is given by the parameterized macro PK_STATE_FC with the name of

the related power state as parameter. The body of each function reports the instructions to determine

the next power state, specified through the return value. To this end, an updating function can have

a direct access to all the public/protected members defined in the module class (in particular the I/O

ports), and to all the members defined in the power_module class.

In order to complete the powerFSM implementation, it is necessary to specify when to execute the

updating functions. This matter is addressed by defining the powerFSM sensitivity. During a PKtool

simulation, the updating functions are automatically executed to set the future power state. This task

is under the control of the PKtool simulation engine, which calls the function associated to the

current power state in suitable triggering events. These latter represent the powerFSM sensitivity.

PowerFSM sensitivity must be specified inside the power_module constructor, with the same

instructions used for the sensitivity of ordinary SystemC processes. As general rule, powerFSM

sensitivity should consider those events which can cause a power state change, that is the events

causing the transitions between the associated operative conditions. For this purpose, it is often

sufficient to consider the triggering events for the module functionality.

There are two ways for specifying powerFSM sensitivity. The first solution consists in a dedicated

instruction, whereas the second one is based on power_module sensitivity (6.5). In our example, the

powerFSM sensitivity is constituted by the positive clock edges, which represent the triggering

events for the square_input processes. Using a dedicated instruction, the powerFSM sensitivity is

defined in this way:

POWER_MODULE_CTOR(square_input)

{

 POWERFSM_SENSITIVITY

 sensitive << clk.pos();

 ...

 ...

}

where we have used the macro POWERFSM_SENSITIVITY followed by the specific sensitivity

instructions. At this point, the powerFSM is entirely specified, and this completes the power state

configuration inside the power_module class.

Alternatively, the powerFSM sensitivity may be implicitly incorporated in the module sensitivity:

 34

POWER_MODULE_CTOR(square_input)

{

 PK_MODULE_SENSITIVITY

 sensitive << clk.pos();

 ...

 ...

}

If module sensitivity and powerFSM sensitivity were both reported, as in the following example

POWER_MODULE_CTOR(square_input)

{

 PK_MODULE_SENSITIVITY

 sensitive << clk.pos();

 POWERFSM_SENSITIVITY

 sensitive << FSM_event;

 ...

 ...

}

the explicit instruction always prevails over the module sensitivity. In the considered example, this

means that the updating functions will be executed whenever the FSM_event is notified, and only in

this case.

When the triggering events of powerFSM sensitivity are the same of the other possible sensitivity

specifications (i.e. AIP and cycle-model sensitivity), the simplest solution is to report only the

module sensitivity inside the power_module constructor. This may be the case of a module whose

functionality is triggered only by clock events.

8.3 Power model specification and configuration file

When realizing a power state characterization, the configuration steps c) and e) are handled

similarly to a basic configuration with the extension of the specification tasks for each power state.

Considering again the example presented in 7.2, at the beginning of a PKtool simulation the

preliminary window menu is displayed on the command prompt window:

 POWER_MODULE: squin_1

OPTIONS FOR SPECIFYING THE POWER MODELS

1: interaction with window

 35

2: reading from configuration file

3: no monitoring

select an option (1, 2, or 3) =

The layout and meaning of the text are the same of a basic PKtool simulation. If the power model is

specified via window interaction, by selecting the option 1:

number of power states: 3
estimation type: energy
model library selected: pk_default_energy_lib
available power models: 9
related numeric indexes: 0 1 2 3 4 21 22 23 41

Initial state =

The first five sentences are for informative purpose and report the number of power states, the

estimation type and the features of the used model library. The final sentence is a request not

present in a basic PKtool simulation, which asks to specify the initial power state through its

numeric identifier. This value is used to initialize the powerFSM at the beginning of the simulation.

When the powerFSM is triggered the first time, it is executed the updating function related to the

initial power state. In our example, we can assume that squin_1 starts from a normal working

condition; this latter is associated to the power state normal_st, whose numeric identifier is 2.

The successive tasks concern the specification of the power model and its static data for each power

state. This means that the interactive requests described in 7.2 will be repeated for each power state,

going from the first one to the last one. In our example, we could suppose an application where

different power states are associated to different power models. Continuing in the window

interaction, the user must define the power model for the first power state, i.e. standby_st:

1st POWER STATE

 power model =

For this power state we might consider the power model fixed_power (11.2), based on a constant

power dissipation and identified by the index 0.

Thereafter, it is required the power dissipation related to fixed_power:

power model: fixed_power numeric index: 0
power (mW) =

We could assume this quantity equal to 0,2 mW. The power model does not need other static data;

the power model specification for the first power state is so completed.

In the following, the power model specification is repeated for the other two power states with the

same modalities:

 36

2nd POWER STATE

 power model =

The second power state is normal_st and could be associated to the power model model_3, whose

numeric identifier is 3. As explained in 7.2, the static data required by such model are the

proportionality coefficient, the equivalent capacitance and the power supply:

power model: model_3 numeric index: 3
proportionality coefficient (units) =

equivalent capacitance (nF) =

power supply (V) =

As concerns the proportionality coefficient, we could assume the value 3; the equivalent

capacitance and power supply might be assigned respectively to 12 nanofarad and 3.3 Volt. The

model specification for the second power state is so completed.

Finally, the specification procedure is carried out for the third power state:

3rd POWER STATE

 power model =

This power state is overflow_st and could be associated to the power model fixed_power,

analogously to standby_st. In the overflow state, the power dissipation required by fixed_power as

static data could be assigned to 0.8 milliWatt.

At this point, the window interaction is completed and PKtool is provided with all the elements for

estimating the power dissipation in each power state. Like a basic PKtool simulation, a

configuration file is automatically created with all the information specified via the window

interaction. In this case, the contents of such file are more articulated than a basic format. More in

detail, this is the configuration file generated from the window interaction previously illustrated:

 1) Configuration file power_module: squin_1
 2)
 3) monitored power_module (Y/N)= Y
 4)
 5) enable window menu (Y/N)= Y
 6)
 7)
 8) number of power states: 3
 9) estimation type: energy
10) model library selected: pk_default_energy_lib
11) available power models: 9
12) related indexes: 0 1 2 3 4 21 22 23 41
13) initial power state = 2
14)

 37

15) 1st POWER STATE
16)
17) power model: fixed_power numeric index: 1
18) power (mW) = 0.2
19)
20)
21) 2nd POWER STATE
22)
23) power model: model_3 numeric index: 3
24) proportionality coefficient (adimensional units) = 3
25) equivalent capacitance (nF) = 12
26) power supply (V) = 3.3
27)
28)
29) 3rd POWER STATE
30)
31) power model: fixed_power numeric index: 1
32) power (mW) = 0.8

The contents of the first lines are the same of the basic format. In addition, Lines 8-13 report the

number of power states and the initial power state. In the following, the power model specifications

are reported for each power state (lines 15-18, 21-26, 29-32).

Like a basic configuration, this file can be used for a fast specification of the power models through

the option 2 of the preliminary window menu. It is also possible to modify the data reported in the

file and read the new configuration from the updated file. The feasibility of this solution depends on

which data should be changed. In particular, if the user wants to modify the initial power state

and/or the static data required by the power models, these modifications can be made directly on the

configuration file. In the successive simulations, it will be possible to use the updated file in

application with the option 2 of the preliminary window menu.

The situation is different if the user wants to change the power models associated to the power

states, because this cannot be made through a direct modification of a pre-existent configuration

file. In this case, at least in the first PKtool simulation with the new configuration, it is necessary to

specify the power models via the window interaction. In this way, a new configuration file will be

automatically generated with the updated data.

8.4 Behaviour of augmented signals in a power state characterization

The data provided by augmented signals are affected by a power state characterization. During a

simulation, such data can be reset and re-computed according to the power state changes, such that

their values are referred to the active times of the triggered power states. When a power state

change occurs, the data provided by the augmented signals are passed to the power model of the

past power state, in order to calculate a partial energy estimation. After that, the augmented signal

data are reset and their computation can re-start for the new power state. These operations can be

repeatedly carried out whenever a power state change occurs, until the end of the simulation.

In order to show concretely this behaviour, let us consider an example based on this augmented

signal:

sc_uint_aug<16> bus;

 38

Let us suppose this signal belongs to a module configured through three power states; we will refer

to these power states simply as st_A, st_B, st_C. Now, let us consider this possible power state

evolution during a PKtool simulation:

Let us suppose these assignments for the bus signal:

 TIME SIGNAL VALUE

 0 ns 0 (initial value)

 10 ns 2

 20 ns 5

 30 ns 16

 60 ns 4

 70 ns 7

 90 ns 8

 100 ns 5

 110 ns 10

 120 ns 6

For simplicity reasons, in this example we can consider only the augmented signal data related to

total commutations. According to the previous evolution, the total commutations provided by the

bus signal are the following:

 TIME COMMUTATIONS TOTAL COMMUTATIONS

 0 ns 0 0

 10 ns 1 0 + 1 = 1

 20 ns 3 1 + 3 = 4

 30 ns 3 4 + 3 = 7

 60 ns 2 0 + 2 = 2

 70 ns 2 2 + 2 = 4

 90 ns 4 0 + 4 = 4

 100 ns 3 4 + 3 = 7

0 ns 30 ns 80 ns 100 ns 120 ns

st_A st_B st_A st_C

 39

 110 ns 4 0 + 4 = 4

 120 ns 2 4 + 2 = 6

The middle column reports the commutations occurred between two contiguous assignments,

whereas the most right column the total commutations. When a power state change occurs, the total

commutations are reset and their computation re-starts for the new power state. In the above

scheme, this behaviour can be observed at the times 60ns, 90ns and 110ns. The past value of the

total commutations represents the commutations occurred during the active periods of the past

power state. Such data are provided to the power model associated to the past power state, in case

such model requires total commutations in its formulation.

 40

9 ANALYSIS RESULTS

For each power_module, the results of a PKtool simulation are reported in a distinct text file (result

file), automatically created at the end of the simulation. Like configuration files, the result files are

put in the directory where the system project files are located. A result file contains only the output

estimations of the last PKtool simulation; estimation results related to previous simulations are

automatically overridden. For a given power_module, the result file is named according to the

format:

 pk_pmname_res

where pmname is the name of the power_module. Accordingly, in the case of the squin_1

power_module the result file is called pk_squin_1_res.

As an example, we can consider the contents of pk_squin_1_res as could appear at the end of the

simulation described in section 7:

1) *************** SIMULATION RESULTS ***************
2)
3)
4) overall simulation period: [0 - 650 ns]
5)
6) overall energy estimation: 1.01934e-005 J
7) average power estimation: 15.6821 W

The first sentence (line 4) specifies the overall simulation period, in this example supposed equal to

650 ns. Lines 6-7 report the estimation results, given by the energy and average power dissipated in

the simulation period. The average power is derived from the ratio between the energy estimation

and the simulation period.

What has been shown is a typical result file for a configuration without power states. In the case of

a power state characterization, the results are expressed in a more complex format. More precisely,

there are reported also the partial estimations referred to the active periods of the power states. To

show this format, we can consider the squin_1 power_module in the configuration described in 8.2

and based on three power states. Let us suppose that a PKtool simulation has been executed with the

following power state evolution:

0 350 500 700 750 1000 ns

In this case, the result file could be defined as follows:

 1) *************** SIMULATION RESULTS ***************
 2)

standby normal
over-
flow normal normal

 41

 3)
 4) simulation period: [0 s - 350 ns] power state: 2
 5) partial energy estimation: 5.4e-010 J
 6) average power estimation: 0.00154 W
 7)
 8) simulation period: [350 ns - 500 ns] power state: 1
 9) partial energy estimation: 3e-011 J
10) average power estimation: 0.0002 W
11)
12) simulation period: [500 ns - 700 ns] power state: 2
13) partial energy estimation: 3.8e-010 J
14) average power estimation: 0.0019 W
15)
16) simulation period: [700 ns - 750 ns] power state: 3
17) partial energy estimation: 4e-011 J
18) average power estimation: 0.0008 W
19)
20) simulation period: [750 ns - 1000 ns] power state: 2
21) partial energy estimation: 4.7e-010 J
22) average power estimation: 0.00188 W
23)
24)
25) total state changes: 4
26)
27)
28) overall simulation period: [0 - 1000 ns]
29)
30) overall energy estimation: 1.46e-009 J
31) average power estimation: 1.46e-003 W

The text reports the partial estimations referred to the power states triggered during the simulation

(lines 4-6, 8-10, 12-14, 16-18, 20-22). For each estimation, it is specified the simulation period and

the power state via its numeric identifier. The estimations in standby_st and overflow_st are

compliant with the associated power models, based on fixed power dissipations respectively equal

to 0.2 mW and 0.8 mW. As concerns the estimations in the normal_st power state, the applied

power model depends on the total commutations of the augmented signals.

Line 25 reports the number of power state changes occurred during the simulation. Finally, lines 30-

31 show the energy and power estimations related to the whole simulation period. The overall

energy estimation is given by the sum of the partial estimations referred to the single power states.

 42

10 SIMULATION TIME SPECIFICATION

During a PKtool simulation, the overall simulation time is measured by PKtool to calculate the

average power estimations. In particular, PKtool acquires the simulation time by calling the

SystemC function sc_time_stamp [3], at the end of the simulation. However, in some situations the

overall simulation time is not specified explicitly and the value returned by sc_time_stamp could

not be correct with respect to the effective time duration. This could happen when the function

sc_start [3] is called without a time reference passed as input argument.

To circumvent this issue, PKtool provides the function pk_set_simtime, which allows an explicit

definition of a simulation time visible only in PKtool analysis. This function should be called in the

sc_main, before the declaration of sc_start. The use of pk_set_simtime is shown in the following

example:

int sc_main ()

{

 sc_core::sc_time sim_time(1000, SC_NS);

 pk_set_simtime(sim_time);

 ...

 ...

 sc_start();

};

pk_set_simtime requires an sc_time object as input argument; this latter represents the overall

simulation time used in PKtool estimation tasks.

 43

11 DEFAULT MODEL LIBRARIES

11.1 Introduction

PKtool is endowed with some predefined power models that can be directly applied in power

estimations. These models are incorporated into two default libraries, pk_default_energy_lib and

pk_default_comm_lib. Such libraries should be considered as dynamic entities that can be enhanced

with the addition of new elements.

This section reports an in depth description of the power models contained into the default libraries,

excluding the transaction level models; these latter are covered in the specific documentation. Each

model will be illustrated underlining model formulation and model data, according to the

characterization discussed in 2.1. Model data are dealt with considering the distinction between

dynamic and static data. The first category concerns information automatically computed by PKtool

and mainly related to time and signals statistics. Conversely, static data must be specified by the

user through the procedures shown in sections 7-8.

11.2 Power models in pk_default_energy_lib

At the present time, without considering transaction level models, this library contains nine power

models with integer identifiers in the ranges [0 – 4, 21–23, 41].

1) fixed_energy: this power model is associated to the integer index 0, and provides energy

estimations (Energy) according to the formula:

Energy = E

The model returns a constant energy value as estimation. The required data is the energy value (E),

which is expressed in nanojoules and must be provided by the user.

2) fixed_power: this power model is associated to the integer index 1, and provides energy

estimations according to the formula:

Energy = PT

The model is referred to a constant power dissipation, and the estimation is given by the product

between the power (P) and the simulation time (T). The power value is expressed in milliwatts and

must be provided by the user; the simulation time is computed by PKtool.

3) model_2: this power model is associated to the integer index 2, and provides energy estimations

according to the formula:

Energy = c Comm

 44

In this case, the estimation is given by the product between a float proportionality coefficient (c)

and the sum of the total commutations of all the augmented signals (Comm). The proportionality

coefficient is expressed in nanojoules and must be provided by the user; the Comm term is

computed by PKtool.

4) model_3: this power model is associated to the integer index 3, and provides energy estimations

according to the formula:

Energy = c Cap Vdd Comm

which is derived from the dynamic energy consumption in CMOS technology. In the formula, c is a

float proportionality coefficient, Cap an equivalent capacitance, Vdd the applied power supply, and

Comm is the sum of the commutations of all the augmented signals. The proportionality coefficient

is expressed in units, the equivalent capacitance in nanofarads, and the power supply in Volt. Such

data must be provided by the user. The Comm term is computed by PKtool.

5) model_4 : this power model is associated to the integer index 4, and provides energy estimations

according to the formula:

 Energy = Ng (Vdd Ileak T + Cavg Vdd Comm)

In the above expression Ng is the number of gates of the monitored module. The terms in the round

bracket stand for the static and dynamic components of the energy dissipated by a single gate. Ileak is

the average leakage current, Vdd is the applied power supply, Cavg is the average gate capacitance,

Comm represents the average commutations per gate. This latter value is estimated by averaging the

total commutations of all the augmented signals. Finally, T is the simulation time.

Ng is expressed in adimensional units, Ileak in nanoamperes, Vdd in Volt and Cavg in nanofarads.

Such data must be provided by the user. T and Comm are computed by PKtool.

The next power models (in the range 21 – 23) are table-based power models [1]. In this case model

formulation is given by a discrete representation mapped into a lookup table. The energy values

stored in the lookup table are addressed by some compact form of information regarding the module

environment.

The association between addressing information and table values is typically determined through a

preliminary characterization phase [1]. This latter consists in accurate low-level power simulations

of the module, based on input training patterns reproducing somehow the addressing information.

The measures coming from these simulations lead to define the energy values stored in the table.

Augmented signals can cover an important role in the handling of the lookup table. In fact, in many

cases, the addressing information are referred to signal statistics such as input-output switching

activity or signal probability. During a PKtool simulation, such quantities can be extracted only

from those signals that have been converted into their augmented counterparts. As a consequence,

the application of a table-based power model may require the instance of several augmented signals.

For example, if the addressing information were constituted by the average commutations of the

input ports, the user should augment all the input ports of the module or an appropriate subset of

them.

2

2

2

1

 45

During a simulation, all the tasks concerning lookup table handling are carried out by PKtool in

automatic way. As typical static data, table-based power models require the information to build

lookup tables, in particular the discrete values of the addressing information and the stored energy

estimations. The power models currently available have been derived from the approaches

illustrated in [6-8] .

6) table_1: this power model is associated to the integer index 21, and provides cycle-accurate

estimations (2.2). The model is based on a one-dimension lookup table; the stored energy

estimations are function of the average Hamming distance (average Hd) between consecutive input

vectors. During each simulation cycle, an energy estimation is computed by extracting the table

value addressed by the average Hd between the current and the previous input vector. At the end of

the simulation, the overall estimation is given by the sum of all the cycle estimations extracted from

the table. This model is based on the approach described in [6], where its application is shown for

datapath components.

In this context, the average Hd is a float value in the range [0-1] defined by this formula:

 Σ

 Σ

where N is the number of monitored input ports, h() is the Hamming distance between two

consecutive port values, and size() is the bit size of a single port. The application of this model

requires to augment all the input ports of the module, or an appropriate subset of them. This will

allow to compute the average Hd values during a simulation.

The user must provide the information necessary to build the lookup table, i.e. the addressing Hd

values and the stored energy estimations. These information are specified through the interactive

procedure at the beginning of a PKtool simulation. We can now consider the essential details of

this task.

First of all, it is required the number of elements stored in the table:

number of stored energy values (positive integer) =

The user must write the corresponding value. In this example, we can assume a lookup table with 4

elements. Then, there are required the values of average Hd used for addressing the table:

Hd values (4 float values) =

the user must report a sequence of four float values, separated at least by one blank. These values

must be in the range [0-1] and must be written in increasing order. In this example, we could

consider this sequence: 0.1 0.3 0.5 0.8 .

Finally, the energy estimations stored in the table must be specified:

corresponding energy values (nJ) =

i = 1
h(si)

size(si)
i = 1

N

N

 46

The user must report a sequence of four float values, separated at least by one blank. The energy

estimations are expressed in nanojoules, and their order must correspond with the table indexes

previously declared. In our example, if this sequence is reported: 3.4 4.5 4.9 7.8, the association

between addressing inputs and energy estimations is the following:

0.1 3.4 nJ

0.3 4.5 nJ

0.5 4.9 nJ

0.8 7.8 nJ

After that, the lookup table is completely specified and the simulation resumes its run-time course.

During the simulation, it might happen that the average Hd between two consecutive input vectors

does not match with any of the indexes addressing the lookup table. In this case, the energy

estimation will be a weighted sum of the energy values associated to the two closest indexes. This

means that an average Hd equal to 0.45 will cause the indexes 0.3 and 0.5 to be selected, and the

output estimation will be an interpolation between the estimations connected to these indexes.

7) table_2: this power model is associated to the integer index 22, and provides cycle-accurate

estimations (2.2). The model is based on a two-dimension lookup table; the stored energy

estimations are function of the average Hamming distance (average Hd) and the number of stable

zero bits (stable zeros) between consecutive input vectors. At the end of the simulation, the overall

estimation is given by the sum of all the cycle estimations extracted from the table. This power

model is based on the approach described in [6], and represents a more accurate version of table_1.

During each simulation cycle, an energy estimation is computed by extracting the table value

addressed by the average Hd and stable zeros between the current and the previous input vectors.

Stable zeros are handled as normalized values with respect to the number of input bits, and

therefore are represented by float values in the range [0 – 1]. The boundary value 1 corresponds to

all the input bits retaining a zero value between two consecutive input vectors. The application of

this model requires to augment all the input ports of a module, or an appropriate subset of them.

This will allow to compute the average Hd and stable zeros of the input vectors during a simulation.

The user must provide all the information necessary to build the lookup table, i.e. the stored energy

estimations and the addressing values related to average Hd and stable zeros. These information are

provided through the specification procedure at the beginning of a PKtool simulation. We can

consider the essential details of this task.

First of all, the user is asked to specify the number of values constituting the grid for average Hd:

number of Hd values (positive integer) =

In this example, we can assume a grid with 4 values.

Afterwards, the average Hd values are required:

Hd values (4 float values) =

the user must provide a sequence of four float values written in increasing order. A possible

sequence could be: 0.2 0.4 0.6 0.8 . Then, the same data are required for stable zeros:

number of stable zeros (positive integer) =

 47

We can assume a stable zero grid with 5 values.

normalized stable zero values (5 float values) =

the user must specify a sequence of normalized values in the range [0 – 1], reported in increasing

order. A possible sequence could be: 0.1 0.3 0.5 0.7 0.9 .

At this point, the energy estimations stored in the lookup table are required, with reference to the

addressing values of Hd and stable zeros previously specified. The modality used for this step

consists in the scanning of the stable zero grid for fixed values of Hd:

Hd: 0.2 stable zeros: 0.1 0.3 0.5 0.7 0.9

energy values (nJ) =

the user must report a sequence of five float values, representing the energy estimations addressed

by the (Hd, stable zeros) couples: (0.2 , 0.1); (0.2 , 0.3); (0.2 , 0.5); (0.2 , 0.7); (0.2 , 0.9). This task

is repeated for all the other values of Hd, so to cover all the possible (Hd, stable zeros) couples:

Hd: 0.4 stable zeros: 0.1 0.3 0.5 0.7 0.9

energy values (nJ) =

…
…

After that, the lookup table is completely specified and the PKtool simulation can resume its run-

time course.

The procedure now described could present some inconsistencies, due to (Hd, stable zeros) couples

not associable to an energy estimation. In fact, Hd and stable zeros are not independent quantities:

high values of Hd means that most bits toggle between two input vectors, so excluding high values

of stable zeros. For example, a (Hd = 0.8, stable zeros = 0.9) couple would represent an impossible

case, which cannot happen during a simulation. However, the specification procedure is not able to

recognize the invalid (Hd, stable zeros) couples. More specifically, coming back to the example,

when we have this request sentence:

Hd: 0.8 stable zeros: 0.1 0.3 0.5 0.7 0.9

energy values (nJ) =

It is anyway necessary to specify a sequence of five float values in order the simulation to continue

properly, even if no energy estimation is available for the (Hd, stable zeros) couples with high

stable zeros. In this case, the user must specify meaningless energy values for the invalid (Hd,

stable zeros) couples, given by negative float numbers. This represents a compulsory rule to mark

all the invalid combinations and to allow a correct management of the lookup table. Consequently, a

possible sequence for the previous energy values could be 5.3 6.2 -1 -1 -1 .

During the simulation, it might happen that the average Hd and/or stable zeros between two

consecutive input vectors do not match any of the specified index couples. In this case, the output

 48

estimations will be given by a weighted sum of the table values associated to the two closest index

couples.

8) table_3 : this power model is associated to the integer index 23, and is derived from the approach

described in [7-8]. The model is based on a three-dimension lookup table; the stored energy estima-

tions are function of the average input probability (Pin), the average input transition density (Din)

and the average output transition density (Dout). These signal statistics are formally defined in [2]

and [7].

The application of this model requires to augment all the input and output ports of the monitored

module, or an appropriate subset of them. At the end of a simulation, the previous statistics are

extracted from the augmented input and output ports. Then, the overall energy estimation is

determined by the corresponding table value.

The user must provide all the information to build the lookup table, i.e. the stored energy

estimations and the addressing values of Pin, Din and Dout. These information are provided through

the specification procedure at the beginning of a PKtool simulation. We can consider the essential

details of this task.

At the beginning, the user is asked to specify the clock frequency of the monitored module; this

value is necessary for computing Din and Dout :

clock frequency (Mhz) =

Afterwards, the user is required to specify the value grids for Pin and Din. Such quantities are float

numbers always included in the interval [0,1], and are subject to the constraint explained in [7]:

Din/2 ≤ 1 – 2| Pin – 0.5 | . As a consequence, some (Pin, Din) couples are to be excluded in the

construction of the lookup table. This control task is automatically handled by the specification

procedure, which requires the energy estimations only for valid (Pin, Din) couples.

First of all, the user must specify the number of values constituting the grid for Pin:

number of Pin values (positive integer) =

In this example, we could assume a grid with 5 values.

Afterwards, the Pin values are required :

Pin values (5 float values) =

The user must report a sequence of five float values in increasing order. A possible sequence could

be: 0.2 0.4 0.5 0.6 0.8 .

The same data are required for Din:

number of Din values (positive integer) =

We could assume a Din grid with 4 values.

Din values (4 float values) =

 49

The values must be written in increasing order. We could assume the following Din sequence: 0.1

0.3 0.5 0.7 .

At this point, the Dout grid is to be specified. As observed in [8], the construction of the lookup table

is affected by the lack of direct control on Dout. In fact, unlike Pin and Din, Dout depend on the module

functionality, which is out of the user’s control. As a consequence, Dout values cannot be handled as

independent parameters and cannot be fixed a priori. Moreover, the Dout distribution may not be the

same for different (Pin, Din) couples.

For addressing this issue, the three-dimension lookup table is organized as a matrix of ordered lists

[8]. A matrix element is uniquely identified by a (Pin, Din) couple, and is constituted by a list of

(Dout, energy) couples ordered for increasing Dout. Within the specification procedure, the user is

asked to specify the (Dout, energy) list for each valid (Pin, Din) couple. Accordingly, the specification

procedure continues in this way:

Pin : 0.2 Din : 0.1

Number of Dout values (positive integer) =

The user must specify the number of elements constituting the list associated to the couple (Pin =

0.2, Din = 0.1). We could assume a list of 4 elements.

After that, it is required to specify the Dout values:

Dout values (4 float values) =

The user must report a sequence of four float values in increasing order. We could assume a Dout

sequence given by 0.1 0.3 0.5 0.7 .

Finally, it is required to provide the corresponding energy estimations:

corresponding energy values (nJ) =

The user must report a sequence of four float values, corresponding to the table elements addressed

by the (Pin, Din, Dout) keys: (0.2, 0.1, 0.1), (0.2, 0.1, 0.3), (0.2, 0.1, 0.5), (0.2, 0.1, 0.7). This

completes the specification of the (Dout, energy) list associated to the couple (Pin = 0.2, Din = 0.2).

In the following, such procedure will be repeated for all the other (Pin, Din) couples. In the example,

these couples are given by: (0.2, 0.3), (0.4, 0.1), (0.4 0.3), (0.4, 0.5), (0.4, 0.7), (0.5, 0.1),

(0.5, 0.3), (0.5, 0.5), (0.5, 0.7), (0.6, 0.1), (0.6, 0.3), (0.6, 0.5), (0.6, 0.7), (0.8, 0.1), (0.8,

0.3) . The (Pin, Din) couples (0.2, 0.5), (0.2, 0.7), (0.8, 0.5), (0.8, 0.7) are not considered

because they do not satisfy the constraint Din/2 < 1 – 2| Pin – 0.5 | .

At this point, the lookup table is completely specified and the simulation resumes its run-time

course. At the end of the simulation, it could happen that the computed Pin, Din, Dout do not match

with the indexes specified to address the lookup table. In this case, the power estimation will be

given by a weighted sum of the table values associated to the two closest indexes.

Operator-based power models provide estimations taking into account the operations occurred

during a simulation. At the moment, the default energy library comprises one operator-based power

model associated to the integer identifier 41. This kind of models can be enabled or disabled

through the macro PK_ENABLE_OPMODELS, defined in the header file pk_settings.h inside the

directory src/PKtool/kernel. For enabling/disabling these models, it is necessary to uncom-

 50

ment/comment this macro and rebuild the PKtool library. By default, operator-based models are

enabled.

The application of an operator-based model consists of two main phases: run-time sampling of the

operations, evaluation of the model. Augmented signals play a primary role in the first phase,

because operation sampling is made feasible by means of their capabilities. More precisely, only the

operations involving augmented signals can be sampled. For this reason, when configuring a

module for PKtool analysis, the user should augment all those signals involved in the operations to

be monitored. No sensitivity specification is to be set for enabling operation sampling. In compli-

ance with the limitations specified in 3.2, it is possible to augment input ports and internal nodes for

carrying out operation sampling.

The current PKtool implementation allows to sample only the four main arithmetic operations, i.e.

addition (+), subtraction (-), multiplication (*) and division (/) . In the future PKtool versions

this operator set could be extended.

In general, it is possible to consider several plausible ways to express operation instructions within a

SystemC/C++ description. The operation sampling capability has been developed without including

all the possible cases, but trying to cover only the most usual forms. To be more explicit, let us

consider the following signals:

sc_in<int> in1 // traditional input port

sc_in_aug<int> in2, in3 // augmented input ports

sc_signed; node1 // traditional internal node

sc_signed_aug; node2, node3 // augmented internal node

tp v; // variable/constant of type tp

Assuming addition as reference operation, the following instructions can be sampled during a

PKtool simulation:

in2 + in3; in2.read() + in3.read(); in2 + node1;

in2.read() + node1; in2.read() + node2; in2 + v; in2.read() + v;

in2 + 3; in2.read() + 3; in2 + in3 + node2;

node1 + node2; node2 + node3; node2 + v; node2 + 3; node2++;

++node2; node2 += v; node2 += 3;

The previous instructions are valid also exchanging, where possible, the operand order. Examples of

expressions for which operation sampling is not enabled are the following:

in1 + in2; in1 + in2.read(); in3 + in2.read();

In the current PKtool implementation, operation sampling has been developed for the following

augmented signal types:

a) int_aug, short_aug, long_aug, unsigned_aug, float_aug, double_aug, sc_int_aug<n>,

sc_uint_aug<n>, sc_signed_aug, sc_unsigned_aug, sc_bigint_aug<n>, sc_biguint_aug<n>.

b) sc_in_aug<T>, where T can be: int, short, long, unsigned, float, double, sc_int<n>,

sc_uint<n>, sc_signed, sc_unsigned, sc_bigint<n>, sc_biguint<n>.

 51

c) sc_in_resolved_aug, sc_in_rv_aug<n>.

At the present time, operation sampling is not available for SystemC fixed point types (sc_fix,

sc_ufix, sc_fixed …) .

9) operator_1: this power model is associated to the integer index 41, and provides energy

estimations on the basis of the operations executed during a simulation. Each operator is associated

to a constant energy cost, communicated by the user through the specification procedure at the

beginning of a PKtool simulation. The overall energy estimation is given by the sum of the occurred

operations multiplied by the specific energy costs. As before explained, the sampled operations are

those involving the augmented signals instanced in the module.

In analytical terms, this model provides energy estimations according to the formula:

Energy = (add_nb * add_energy) + (sub_nb * sub_energy) + (mult_nb * mult_energy) +

 + (div_nb * div_energy)

Where op_nb is the number of occurred op operations, whereas op_energy is the energy cost

associated to the op operation.

We can consider the essential details of the procedure for specifying the operator energy costs.

After selecting the index 41 in the power model request, this text is displayed:

power model: operator_1 numeric index: 41
available operators: + - * /

number of enabled operators =

The second sentence informs about the available operators through their symbols. The request

sentence asks the user to indicate how many operators are to be sampled among the available ones.

In this case, such value must be an integer in the range [1 – 4]. If we want to sample additions,

multiplications and divisions, we must report the value 3.

At this point, the procedure requires to select the operators to be sampled:

enabled operators =

The user must specify the operators by means of their symbols, separated at least by one blank. In

our example, we should report this symbol sequence: + * /.

A constant energy cost is required for each operator:

operator +
energy cost (nJ units) =

operator *
energy cost (nJ units) =

 52

operator /
energy cost (nJ units) =

After that, the specification procedure is completed and the simulation resumes its run-time course.

At the end of the simulation, in addition to the overall energy estimation, in the result file (9) will be

also reported the number of occurrences and the overall energy contribution for each operator.

11.3 Power models in pk_default_comm_lib

At the present time, this library contains five power models with integer identifiers in the range

[0– 4].

1) fixed_comm: this power model is associated to the integer index 0, and estimates total

commutations (Commutations) according to the formula:

Commutations = C

The model returns a fixed commutation value as estimation. The required data is the commutation

value (C), which is expressed in adimensional units and must be provided by the user.

2) fixed_rate: this power model is associated to the integer index 1, and estimates total

commutations according to the formula:

Commutations = ST

This model is referred to a constant commutation rate, and the estimation is given by the product

between the commutation rate (S) and the simulation time (T). S is expressed in Hertz and must be

provided by the user; the simulation time is automatically computed by PKtool.

3) model_2: this power model is associated to the integer index 2, and estimates total commutations

according to the formula:

Commutations = cComm

The estimation is given by the product between a proportionality coefficient (c) and the sum of the

commutations of all the instanced augmented signals (Comm). The proportionality coefficient is

expressed in units and must be provided by the user; the Comm term is computed by PKtool.

4) model_3: this power model is associated to the integer index 3, and estimates total commutations

according to the formula:

Commutations = NgComm

 53

Ng is the number of gates of the monitored module; Comm represents the average commutations per

gate. This latter quantity is estimated by averaging the total commutations of all the instanced

augmented signals. The number of gates is expressed in units and must be provided by the user; the

Comm term is computed by PKtool.

5) model_4 : this power model is associated to the integer index 4, and estimates total commutations

according to the formula:

Commutations = NgHavgfckT

The theoretical aspects and the formal definition of this model are reported in [9]. Ng is the number

of gates of the monitored module; Havg is the average bit entropy; fck is the clock frequency; T is

the simulation time. The Havg term is derived from an approximation of the average gate

commutations per clock cycle, under the assumption of independence between consecutive values.

Havg is determined by PKtool and its computation requires to augment all the input and output ports

of the module, or an appropriate subsets of them. Ng and fck must be provided by the user.

2

1

 54

12 REFERENCES

[1] C. Piguet, "Low-Power CMOS Circuit (Technology, Logic Design and CAD Tools)", Taylor &

 Francis Group, 2006.

[2] F. Najm, “Transition Density, a new measure of activity in digital circuits”, IEEE Transaction on

 Computer-Aided design, vol. 12, pp. 310-323, Feb. 1993.

[3] IEEE Standard SystemC Language Reference Manual, (IEEE Std 1666 - 2011)

[4] B. Stroustrup, “The C++ Programming Language (Third Edition)”, Addison Wesley, 1997

[5] J. Rabaey, “Low Power Design Essentials”, Springer, 2009.

[6] Jochens, G.; Kruse, L.; Schmidt, E.; Nebel, W."A new parameterizable power macro-model for

 datapath components", Design, Automation and Test in Europe Conference and Exhibition 1999.

 Proceedings, 9-12 March 1999 Page(s):29 - 36.

[7] S. Gupta, F. Najm, "Power macro-modeling for high-level power estimation", in Proc.

 IEEE/ACM Design Automation Conference (DAC), 1997, pp. 365-370 .

[8] M. Barocci, L. Benini, et al. "Lookup table power macro-models for behavioural library

 components", IEEE Alessandro Volta Memorial Workshop on Low-Power Design, 1999.

 Proceedings.

[9] M. Nemani, F. Najm, "Towards a high-level power estimation capability", IEEE Transaction on

 Computer-Aided design, vol. 15, no. 6, pp. 588-598, June 1996.

 55

CONTENTS

1 INTRODUCTION ... 2

2 POWER MODELS .. 3

 2.1 Introduction .. 3

 2.2 Power model categories ………………………………………………………….. 3
 2.3 Power model libraries and PKtool default libraries ... 4

3 AUGMENTED SIGNALS ……………………………………………………….…… 5

 3.1 Introduction ………………………………………………………...…………….. 5

 3.2 Signals that can be augmented ……………………………………………………. 5

 3.3 Data provided by an augmented signal ………………………………...…………. 7

 3.4 Available augmented types …………………………………….………….………. 8

 3.5 Identification fields …………………………………………….………………….. 9

4 STEPS FOR CONFIGURING A MODULE FOR PKTOOL SIMULATIONS …….. 12

 4.1 Characterization of the steps …………………………………………...………… 12

 4.2 Application example for describing the configuration steps ………………….…. 12

5 INCLUSION OF THE PKTOOL HEADER FILE ………………………………...…. 14

6 DEFINITION OF A POWER_MODULE AND ITS COMPONENTS ……………… 16

 6.1 Introduction …………………………………………………….………………… 16

 6.2 Power_module class ……………………………………………………………… 16

 6.3 Constructor and destructor ………………………………………………..……… 16

 6.4 Output estimation type …………………………………………………………… 18

 6.5 Sensitivity specifications …………………………….…………………………… 18

 6.6 Instance of power_modules …………………………………………………….… 23

7 POWER MODEL AND STATIC DATA SPECIFICATION ……………………....… 26

 7.1 Introduction …………………………………………………………………….…. 26

 7.2 Interaction with command prompt window ……………………………….……… 26

 7.3 Configuration file …………………………………………………………….…… 28

 7.4 Reading from configuration file ……………………………………………...…… 29

8 CHARACTERIZATION BASED ON POWER STATES …………………………..... 31

 8.1 General description and application cases ….........………………………..…….… 31

 8.2 Realization of a power state characterization ……………………………………... 31

 8.3 Power model specification and configuration file …………………………...……. 34

 8.4 Behaviour of the augmented signals in a power state characterization …………… 37

9 ANALYSIS RESULTS ……….………………………………………………….…..... 40

10 SIMULATION TIME SPECIFICATION …….……………………...……………...... 42

11 DEFAULT MODEL LIBRARIES ………………………………………………........ 43

 11.1 Introduction ………………………………………………………………....…... 43

 11.2 Power models in pk_default_energy_lib …………………………..……...…,.… 43

 11.3 Power models in pk_default_comm_lib ……………….………….………….…. 52

 56

12 REFERENCES ……………………………………….………….………………….... 54

CONTENTS …………………………………………………………………………….... 55

